File size: 2,526 Bytes
9303daf
 
 
 
 
 
c84be09
9303daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import av
import torch
import numpy as np
from fastapi import FastAPI, UploadFile, File
from transformers import AutoProcessor, AutoModel
from huggingface_hub import hf_hub_download

app = FastAPI()

np.random.seed(0)

def read_video_pyav(container, indices):
    '''
    Decode the video with PyAV decoder.
    Args:
        container (`av.container.input.InputContainer`): PyAV container.
        indices (`List[int]`): List of frame indices to decode.
    Returns:
        result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
    '''
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])

def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
    '''
    Sample a given number of frame indices from the video.
    Args:
        clip_len (`int`): Total number of frames to sample.
        frame_sample_rate (`int`): Sample every n-th frame.
        seg_len (`int`): Maximum allowed index of sample's last frame.
    Returns:
        indices (`List[int]`): List of sampled frame indices
    '''
    converted_len = int(clip_len * frame_sample_rate)
    end_idx = np.random.randint(converted_len, seg_len)
    start_idx = end_idx - converted_len
    indices = np.linspace(start_idx, end_idx, num=clip_len)
    indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
    return indices

processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")

@app.post("/classify_video/")
async def classify_video(file: UploadFile):
    file_bytes = await file.read()
    
    container = av.open(file_bytes)
    indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
    video = read_video_pyav(container, indices)

    inputs = processor(
        text=["playing sports", "eating spaghetti", "go shopping"],
        videos=[video],  # Changed list(video) to [video] to avoid error
        return_tensors="pt",
        padding=True,
    )

    with torch.no_grad():
        outputs = model(**inputs)

    logits_per_video = outputs.logits_per_video
    probs = logits_per_video.softmax(dim=1)
    
    return {"classification_probabilities": probs.tolist()}