File size: 8,977 Bytes
9798f42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
if not os.path.isdir("weights"):
os.mkdir("weights")
os.system("python -m pip install --upgrade pip")
os.system(
"wget https://raw.githubusercontent.com/asharma381/cs291I/main/backend/original_images/000749.png"
)
os.system(
"wget -q -O weights/sam_vit_h_4b8939.pth https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
)
os.system(
"wget -q -O weights/ram_plus_swin_large_14m.pth https://huggingface.co/xinyu1205/recognize-anything-plus-model/resolve/main/ram_plus_swin_large_14m.pth"
)
os.system(
"wget -q -O weights/groundingdino_swint_ogc.pth https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
)
os.system("pip install git+https://github.com/xinyu1205/recognize-anything.git")
os.system("pip install git+https://github.com/IDEA-Research/GroundingDINO.git")
os.system("pip install git+https://github.com/facebookresearch/segment-anything.git")
os.system("pip install openai==0.27.4")
os.system("pip install tenacity")
from typing import List, Tuple
import cv2
import gradio as gr
import groundingdino.config.GroundingDINO_SwinT_OGC
import numpy as np
import openai
import torch
from groundingdino.util.inference import Model
from PIL import Image, ImageDraw
from ram import get_transform
from ram import inference_ram as inference
from ram.models import ram_plus
from scipy.spatial.distance import cdist
from segment_anything import SamPredictor, sam_model_registry
from supervision import Detections
from tenacity import retry, wait_fixed
device = "cuda" if torch.cuda.is_available() else "cpu"
ram_model = None
ram_threshold_multiplier = 1
gdino_model = None
sam_model = None
sam_predictor = None
print("CUDA Available:", torch.cuda.is_available())
def get_tags_ram(
image: Image.Image, threshold_multiplier=0.8, weights_folder="weights"
) -> List[str]:
global ram_model, ram_threshold_multiplier
if ram_model is None:
print("Loading RAM++ Model...")
ram_model = ram_plus(
pretrained=f"{weights_folder}/ram_plus_swin_large_14m.pth",
vit="swin_l",
image_size=384,
)
ram_model.eval()
ram_model = ram_model.to(device)
ram_model.class_threshold *= threshold_multiplier / ram_threshold_multiplier
ram_threshold_multiplier = threshold_multiplier
transform = get_transform()
image = transform(image).unsqueeze(0).to(device)
res = inference(image, ram_model)
return [s.strip() for s in res[0].split("|")]
def get_gdino_result(
image: Image.Image,
classes: List[str],
box_threshold: float = 0.25,
weights_folder="weights",
) -> Tuple[Detections, List[str]]:
global gdino_model
if gdino_model is None:
print("Loading GroundingDINO Model...")
config_path = groundingdino.config.GroundingDINO_SwinT_OGC.__file__
gdino_model = Model(
model_config_path=config_path,
model_checkpoint_path=f"{weights_folder}/groundingdino_swint_ogc.pth",
device=device,
)
detections, phrases = gdino_model.predict_with_caption(
image=np.array(image),
caption=", ".join(classes),
box_threshold=box_threshold,
text_threshold=0.25,
)
return detections, phrases
def get_sam_model(weights_folder="weights"):
global sam_model
if sam_model is None:
sam_checkpoint = f"{weights_folder}/sam_vit_h_4b8939.pth"
sam_model = sam_model_registry["vit_h"](checkpoint=sam_checkpoint)
sam_model.to(device=device)
return sam_model
def filter_tags_gdino(image: Image.Image, tags: List[str]) -> List[str]:
detections, phrases = get_gdino_result(image, tags)
filtered_tags = []
for tag in tags:
for (
phrase,
area,
) in zip(phrases, detections.area):
if area < 0.9 * image.size[0] * image.size[1] and tag in phrase:
filtered_tags.append(tag)
break
return filtered_tags
def read_file_to_string(file_path: str) -> str:
content = ""
try:
with open(file_path, "r", encoding="utf8") as file:
content = file.read()
except FileNotFoundError:
print(f"The file {file_path} was not found.")
except Exception as e:
print(f"An error occurred while reading {file_path}: {e}")
return content
@retry(wait=wait_fixed(2))
def completion_with_backoff(**kwargs):
return openai.ChatCompletion.create(**kwargs)
def gpt4(
usr_prompt: str, sys_prompt: str = "", api_key: str = "", model: str = "gpt-4"
) -> str:
openai.api_key = api_key
message = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": usr_prompt},
]
response = completion_with_backoff(
model=model,
messages=message,
temperature=0.2,
max_tokens=1000,
frequency_penalty=0.0,
)
return response["choices"][0]["message"]["content"]
def select_best_tag(
filtered_tags: List[str], object_to_place: str, api_key: str = ""
) -> str:
user_template = read_file_to_string("user_template.txt").format(object=object_to_place)
user_prompt = user_template + "\n".join(filtered_tags)
system_prompt = read_file_to_string("system_template.txt")
return gpt4(user_prompt, system_prompt, api_key=api_key)
def get_location_gsam(
image: Image.Image, prompt: str, weights_folder="weights"
) -> Tuple[int, int]:
global sam_predictor
BOX_TRESHOLD = 0.25
RESIZE_RATIO = 3
detections, phrases = get_gdino_result(
image=image,
classes=[prompt],
box_threshold=BOX_TRESHOLD,
)
while len(detections.xyxy) == 0:
BOX_TRESHOLD -= 0.02
detections, phrases = get_gdino_result(
image=image,
classes=[prompt],
box_threshold=BOX_TRESHOLD,
)
sam_model = get_sam_model(weights_folder)
if sam_predictor is None:
print("Loading SAM Model...")
sam_predictor = SamPredictor(sam_model)
sam_predictor.set_image(np.array(image))
result_masks = []
for box in detections.xyxy:
masks, scores, logits = sam_predictor.predict(box=box, multimask_output=True)
index = np.argmax(scores)
result_masks.append(masks[index])
detections.mask = np.array(result_masks)
combined_mask = detections.mask[0]
for mask in detections.mask[1:]:
combined_mask += mask
combined_mask[combined_mask > 1] = 1
mask = cv2.resize(
combined_mask.astype("uint8"),
(
combined_mask.shape[1] // RESIZE_RATIO,
combined_mask.shape[0] // RESIZE_RATIO,
),
)
mask_2_pad = np.pad(mask, pad_width=2, mode="constant", constant_values=0)
mask_1_pad = np.pad(mask, pad_width=1, mode="constant", constant_values=0)
windows = np.lib.stride_tricks.sliding_window_view(mask_2_pad, (3, 3))
windows_all_zero = (windows == 0).all(axis=(2, 3))
result = np.where(windows_all_zero, 2, mask_1_pad)
mask_0_coordinates = np.argwhere(result == 0)
mask_1_coordinates = np.argwhere(result == 1)
distances = cdist(mask_1_coordinates, mask_0_coordinates, "euclidean")
max_min_distance_index = np.argmax(np.min(distances, axis=1))
y, x = mask_1_coordinates[max_min_distance_index]
return int(x) * RESIZE_RATIO, int(y) * RESIZE_RATIO
def run_octo_pipeline(input_image, object, api_key):
print("Inside run_octo_pipeline with input_image=", input_image, "object=", object)
print("Loading Image...")
image = input_image.convert("RGB")
print("Stage 1...")
tags = get_tags_ram(image, threshold_multiplier=0.8)
print("RAM++ Tags", tags)
filtered_tags = filter_tags_gdino(image, tags)
print("Filtered Tags", filtered_tags)
print("Stage 2...")
selected_tag = select_best_tag(filtered_tags, object, api_key=api_key)
print("GPT-4 Selected Tag", selected_tag)
print("Stage 3...")
x, y = get_location_gsam(image, selected_tag)
print("G-SAM Location", "(" + str(x) + "," + str(y) + ")")
draw = ImageDraw.Draw(image)
radius = 10
bbox = (x - radius, y - radius, x + radius, y + radius)
draw.ellipse(bbox, fill="red")
return [image]
block = gr.Blocks()
with block:
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", value="000749.png")
object = gr.Textbox(label="Object", placeholder="Enter an object")
api_key = gr.Textbox(label="OpenAI API Key", placeholder="Enter OpenAI API Key")
with gr.Column():
gallery = gr.Gallery(
label="Output",
show_label=False,
elem_id="gallery",
preview=True,
object_fit="scale-down",
)
iface = gr.Interface(
fn=run_octo_pipeline, inputs=[input_image, object, api_key], outputs=gallery
)
iface.launch()
|