File size: 2,532 Bytes
6a2ebf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import streamlit as st
import pickle
import string
from nltk.corpus import stopwords
import nltk
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
# Function to preprocess the input text
def transform_text(text):
text = text.lower() # Convert to lowercase
text = nltk.word_tokenize(text) # Tokenize the text
y = []
# Removing alphanumeric tokens
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
# Removing stopwords and punctuation
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
# Performing stemming
for i in text:
y.append(ps.stem(i))
return " ".join(y) # Join the list into a single string with spaces
# Load the saved models (TF-IDF Vectorizer and the classification model)
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
model = pickle.load(open('model.pkl', 'rb'))
# Setting up the main title and description
st.title("π§ Email/SMS Spam Classifier")
st.write("""
### Enter a message to determine whether it's Spam or Not Spam.
This classifier uses **natural language processing (NLP)** techniques to preprocess and predict based on your input.
""")
# Input text field for user to enter the message
st.write("#### Message Input:")
input_sms = st.text_area("Type or paste your message here", height=150)
# Add a button to trigger the classification
if st.button("π Classify Message"):
if input_sms.strip(): # Ensure there's text in the input
## 1. Preprocess the input text
with st.spinner('Processing...'):
transformed_sms = transform_text(input_sms)
## 2. Vectorize the transformed text
vector_input = tfidf.transform([transformed_sms])
## 3. Predict the label (Spam or Not Spam)
result = model.predict(vector_input)[0]
## 4. Display the result with appropriate color and message
if result == 1:
st.success("π΄ This message is classified as **Spam**.")
else:
st.success("π’ This message is classified as **Not Spam**.")
else:
st.warning("Please enter a valid message to classify.")
# Adding a footer with a reference to your classifier and author
st.markdown("""
---
Developed using **Streamlit** and **NLP techniques**.<br>
**Author**: **Aditya Yadav**
""", unsafe_allow_html=True) |