File size: 4,438 Bytes
e9e2aab
b5e8b97
 
e9e2aab
b5e8b97
 
1c472db
 
 
 
 
 
 
 
 
 
b5e8b97
 
1c472db
 
 
 
 
 
 
 
 
b5e8b97
 
 
 
 
 
6c139d0
286253d
b5e8b97
1c472db
 
 
 
 
 
 
 
 
 
e9e2aab
 
1c472db
 
 
 
6c139d0
1c472db
 
 
 
 
 
 
 
 
 
 
 
 
 
339d9cc
1c472db
 
 
 
 
 
 
 
 
 
 
339d9cc
1c472db
 
339d9cc
1c472db
 
74880fc
1c472db
 
339d9cc
1c472db
 
 
 
f302484
1c472db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
import legacy
import dnnlib
import numpy as np
import torch

import find_direction
import generator
import psp_wrapper


psp_encoder_path = "./pretrained/e4e_ffhq_encode.pt"
landmarks_path = "./pretrained/shape_predictor_68_face_landmarks.dat"
e4e_embedder = psp_wrapper.psp_encoder(psp_encoder_path, landmarks_path)
G_ffhq_path = "./pretrained/ffhq.pkl"
G_metfaces_path = "./pretrained/metfaces.pkl"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

with dnnlib.util.open_url(G_ffhq_path) as f:
    G_ffhq = legacy.load_network_pkl(f)['G_ema'].to(device)

with dnnlib.util.open_url(G_metfaces_path) as f:
    G_metfaces = legacy.load_network_pkl(f)['G_ema'].to(device)

G_dict = {"FFHQ": G_ffhq, "MetFaces": G_metfaces}



DESCRIPTION = '''# <a href="https://github.com/catlab-team/stylemc"> StyleMC:</a> Multi-Channel Based Fast Text-Guided Image Generation and Manipulation
'''
FOOTER = 'This space is built by <a href = "https://github.com/catlab-team">Catlab Team</a>.'

direction_map = {}
direction_list = []

def add_direction(prompt, stylegan_type, id_loss_w):
    new_dir_name = prompt+" "+stylegan_type+" w_id_loss"+str(id_loss_w)
    if (prompt != None) and (new_dir_name not in direction_list):
        print("adding direction with id:", new_dir_name)
        direction = find_direction.find_direction(G_dict[stylegan_type], prompt)
        print(f"new direction calculated with {stylegan_type} and id loss weight = {id_loss_w}")
        direction_list.append(new_dir_name)
        direction_map[new_dir_name]={"direction":direction, "stylegan_type":stylegan_type}

    return gr.Radio.update(choices=direction_list, value=None, visible=True)


def generate_output_image(image_path, direction_id, change_power):
    direction = direction_map[direction_id]["direction"]
    G=G_dict["FFHQ"]

    w = e4e_embedder.get_w(image_path)
    s = generator.w_to_s(GIn=G, wsIn=w)
    output_image = generator.generate_from_style(
        GIn=G, 
        styles=s, 
        styles_direction=direction,
        change_power=change_power,
        outdir='.'
    )
    return output_image
  
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Box():
        gr.Markdown('''### Step 1 (Finding a global manipulation direction) - Please enter the target **text prompt** and **identity loss weight** to find global manipulation direction.''')
        with gr.Row():
            with gr.Column():
                style_gan_type = gr.Radio(["FFHQ", "MetFaces"], value = "FFHQ", label="StyleGAN Type", interactive=True)
            with gr.Column():
                identity_loss_weight = gr.Slider(
                    0.1, 10, value=0.5, step=0.1,label="Identity Loss Weight",interactive=True
                )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Textbox(
                        label="Enter your text prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your text prompt"
                    ).style(container=False)

                    find_direction_btn = gr.Button("Find Direction").style(full_width=False)

    with gr.Box():
        gr.Markdown('''### Step 2 (Manipulation) - Please upload an image: - You can select any of the previously found **directions** and set the **manipulation strength** to manipulate the image.''')
        with gr.Row():
            direction_radio = gr.Radio(direction_list, label="List of Directions")
        with gr.Row():
            manipulation_strength = gr.Slider(
                0.1, 25, value=10, step=0.1, label="Manipulation Strength",interactive=True
            )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(label="Input Image", type="filepath")
                with gr.Row():
                    generate_btn = gr.Button("Generate")
            with gr.Column():
                with gr.Row():
                    generated_image = gr.Image(label="Generated Image",type="pil",interactive=False)

    find_direction_btn.click(add_direction, inputs=[text, style_gan_type, identity_loss_weight], outputs=direction_radio)
    generate_btn.click(generate_output_image, inputs=[input_image, direction_radio,manipulation_strength], outputs=generated_image)

demo.launch(debug=True)