File size: 3,621 Bytes
757ed1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch

class Decoder(torch.nn.Module):
    def __init__(self, cfg):
        super(Decoder, self).__init__()
        self.cfg = cfg

        # Layer Definition
        self.layer1 = torch.nn.Sequential(
            torch.nn.ConvTranspose3d(2048, 512, kernel_size=4, stride=2, bias=cfg.NETWORK.TCONV_USE_BIAS, padding=1),
            torch.nn.BatchNorm3d(512),
            torch.nn.ReLU()
        )
        self.layer2 = torch.nn.Sequential(
            torch.nn.ConvTranspose3d(512, 128, kernel_size=4, stride=2, bias=cfg.NETWORK.TCONV_USE_BIAS, padding=1),
            torch.nn.BatchNorm3d(128),
            torch.nn.ReLU()
        )
        self.layer3 = torch.nn.Sequential(
            torch.nn.ConvTranspose3d(128, 32, kernel_size=4, stride=2, bias=cfg.NETWORK.TCONV_USE_BIAS, padding=1),
            torch.nn.BatchNorm3d(32),
            torch.nn.ReLU()
        )
        self.layer4 = torch.nn.Sequential(
            torch.nn.ConvTranspose3d(32, 8, kernel_size=4, stride=2, bias=cfg.NETWORK.TCONV_USE_BIAS, padding=1),
            torch.nn.BatchNorm3d(8),
            torch.nn.ReLU()
        )
        self.layer5 = torch.nn.Sequential(
            torch.nn.ConvTranspose3d(8, 1, kernel_size=1, bias=cfg.NETWORK.TCONV_USE_BIAS),
            torch.nn.Sigmoid()
        )

    def forward(self, image_features):
        image_features = image_features.permute(1, 0, 2, 3, 4).contiguous()
        image_features = torch.split(image_features, 1, dim=0)
        gen_volumes = []
        raw_features = []

        for features in image_features:
            gen_volume = features.view(-1, 2048, 2, 2, 2)
            # print(gen_volume.size())   # torch.Size([batch_size, 2048, 2, 2, 2])
            gen_volume = self.layer1(gen_volume)
            # print(gen_volume.size())   # torch.Size([batch_size, 512, 4, 4, 4])
            gen_volume = self.layer2(gen_volume)
            # print(gen_volume.size())   # torch.Size([batch_size, 128, 8, 8, 8])
            gen_volume = self.layer3(gen_volume)
            # print(gen_volume.size())   # torch.Size([batch_size, 32, 16, 16, 16])
            gen_volume = self.layer4(gen_volume)
            raw_feature = gen_volume
            # print(gen_volume.size())   # torch.Size([batch_size, 8, 32, 32, 32])
            gen_volume = self.layer5(gen_volume)
            # print(gen_volume.size())   # torch.Size([batch_size, 1, 32, 32, 32])
            raw_feature = torch.cat((raw_feature, gen_volume), dim=1)
            # print(raw_feature.size())  # torch.Size([batch_size, 9, 32, 32, 32])

            gen_volumes.append(torch.squeeze(gen_volume, dim=1))
            raw_features.append(raw_feature)

        gen_volumes = torch.stack(gen_volumes).permute(1, 0, 2, 3, 4).contiguous()
        raw_features = torch.stack(raw_features).permute(1, 0, 2, 3, 4, 5).contiguous()
        # print(gen_volumes.size())      # torch.Size([batch_size, n_views, 32, 32, 32])
        # print(raw_features.size())     # torch.Size([batch_size, n_views, 9, 32, 32, 32])
        return raw_features, gen_volumes


class DummyCfg:
    class NETWORK:
        TCONV_USE_BIAS = False

cfg = DummyCfg()

# Instantiate the decoder
decoder = Decoder(cfg)

# Simulate input: shape [batch_size,n_views,img_c, img_h, img_w]
n_views = 1
batch_size = 64
img_c, img_h, img_w = 256, 8, 8
dummy_input = torch.randn(batch_size,n_views,img_c, img_h, img_w)

# Run the decoder
print(dummy_input.shape)
raw_features, gen_volumes = decoder(dummy_input)

# Output shapes
print("raw_features shape:", raw_features.shape)   # Expected: [64, 5, 9, 32, 32, 32]
print("gen_volumes shape:", gen_volumes.shape)