Spaces:
Build error
Build error
File size: 12,708 Bytes
6c25ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
'''
This file scores an argument prediction file from predicted triggers.
'''
import os
import json
import argparse
import re
from copy import deepcopy
from collections import defaultdict
from tqdm import tqdm
import spacy
from utils import load_ontology,find_arg_span, compute_f1, get_entity_span, find_head, WhitespaceTokenizer
nlp = spacy.load('en_core_web_sm')
nlp.tokenizer = WhitespaceTokenizer(nlp.vocab)
'''
Scorer for argument extraction on ACE & KAIROS.
For the RAMS dataset, the official scorer is used.
Outputs:
Head F1
Coref F1
'''
print("pipeliner.py")
def clean_span(ex, span):
tokens = ex['tokens']
if tokens[span[0]].lower() in {'the', 'an', 'a'}:
if span[0]!=span[1]:
return (span[0]+1, span[1])
return span
def extract_args_from_template(ex, template, ontology_dict,):
# extract argument text
template_words = template.strip().split()
predicted_words = ex['predicted'].strip().split()
predicted_args = defaultdict(list) # each argname may have multiple participants
t_ptr= 0
p_ptr= 0
evt_type = ex['event']['event_type']
while t_ptr < len(template_words) and p_ptr < len(predicted_words):
if re.match(r'<(arg\d+)>', template_words[t_ptr]):
m = re.match(r'<(arg\d+)>', template_words[t_ptr])
arg_num = m.group(1)
try:
arg_name = ontology_dict[evt_type][arg_num]
except KeyError:
print(evt_type)
exit()
if predicted_words[p_ptr] == '<arg>':
# missing argument
p_ptr +=1
t_ptr +=1
else:
arg_start = p_ptr
while (p_ptr < len(predicted_words)) and ((t_ptr== len(template_words)-1) or (predicted_words[p_ptr] != template_words[t_ptr+1])):
p_ptr+=1
arg_text = predicted_words[arg_start:p_ptr]
predicted_args[arg_name].append(arg_text)
t_ptr+=1
# aligned
else:
t_ptr+=1
p_ptr+=1
return predicted_args
def create_coref_mapping(args):
'''
Coref mapping for the entire data split.
'''
coref_mapping = defaultdict(dict) # span to canonical entity_id mapping for each doc
if args.dataset == 'KAIROS' and args.coref_file:
with open(args.coref_file, 'r') as f, open(args.test_file, 'r') as test_reader:
for line, test_line in zip(f, test_reader):
coref_ex = json.loads(line)
ex = json.loads(test_line)
doc_id = coref_ex['doc_key']
for cluster, name in zip(coref_ex['clusters'], coref_ex['informative_mentions']):
canonical = cluster[0]
for ent_id in cluster:
ent_span = get_entity_span(ex, ent_id)
ent_span = (ent_span[0], ent_span[1]-1)
coref_mapping[doc_id][ent_span] = canonical
# this does not include singleton clusters
else:
# for the ACE dataset
with open(args.test_file) as f:
for line in f:
doc=json.loads(line.strip())
doc_id = doc['sent_id']
for entity in doc['entity_mentions']:
mention_id = entity['id']
ent_id = '-'.join(mention_id.split('-')[:-1])
coref_mapping[doc_id][(entity['start'], entity['end']-1)] = ent_id # all indexes are inclusive
return coref_mapping
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gen-file',type=str,default='checkpoints/gen-all-ACE-freq-pipeline/predictions.jsonl' )
parser.add_argument('--tgr-pred-file', type=str,default='data/ace/zs-freq-10/pred.oneie.json')
parser.add_argument('--test-file', type=str,default='data/ace/zs-freq-10/test.oneie.json')
parser.add_argument('--coref-file', type=str)
parser.add_argument('--head-only', action='store_true')
parser.add_argument('--coref', action='store_true', default=True)
parser.add_argument('--dataset',type=str, default='ACE', choices=['ACE', 'KAIROS'])
parser.add_argument('--seen-types', type=str)
args = parser.parse_args()
ontology_dict = load_ontology(dataset=args.dataset)
seen_types = set()
if args.seen_types:
with open(args.seen_types) as f:
for line in f:
e = line.strip()
assert(e in ontology_dict)
seen_types.add( e)
if args.dataset == 'KAIROS' and not args.coref_file:
print('coreference file needed for the KAIROS dataset.')
raise ValueError
coref_mapping = create_coref_mapping(args)
examples = {}
doc2ex = defaultdict(list) # a document contains multiple events
with open(args.gen_file,'r') as f:
for lidx, line in enumerate(f): # this solution relies on keeping the exact same order
pred = json.loads(line.strip())
examples[lidx] = {
'predicted': pred['predicted'],
'gold': pred['gold'],
'doc_id': pred['doc_key']
}
doc2ex[pred['doc_key']].append(lidx)
with open(args.tgr_pred_file, 'r') as f:
for line in f:
doc = json.loads(line.strip())
if 'sent_id' in doc.keys():
doc_id = doc['sent_id']
# print('evaluating on sentence level')
else:
doc_id = doc['doc_id']
# print('evaluating on document level')
for idx, eid in enumerate(doc2ex[doc_id]):
examples[eid]['tokens'] = doc['tokens']
try:
examples[eid]['event'] = doc['event_mentions'][idx]
examples[eid]['entity_mentions'] = doc['entity_mentions']
except IndexError:
print(doc_id)
exit()
gold_evt_dict ={} # doc_key -> list of event_mentions
with open(args.test_file, 'r') as f:
for line in f:
doc = json.loads(line.strip())
if 'sent_id' in doc.keys():
doc_id = doc['sent_id']
# print('evaluating on sentence level')
else:
doc_id = doc['doc_id']
# print('evaluating on document level')
gold_evt_dict[doc_id] = doc['event_mentions']
gold_arg_num =0
# directly compute the number of gold args
for event_list in gold_evt_dict.values():
for e in event_list:
if e['event_type'] not in seen_types:
gold_arg_num += len(e['arguments'])
pred_arg_num =0
arg_idn_num =0
arg_class_num =0
arg_idn_coref_num =0
arg_class_coref_num =0
for ex in tqdm(examples.values()):
# an example is a single predicted event
context_words = ex['tokens']
doc_id = ex['doc_id']
doc = None
if args.head_only:
doc = nlp(' '.join(context_words))
# get template
evt_type = ex['event']['event_type']
if evt_type in seen_types:
continue
if evt_type not in ontology_dict:
continue
template = ontology_dict[evt_type]['template']
# extract argument text
predicted_args = extract_args_from_template(ex,template, ontology_dict)
# get trigger
# extract argument span
trigger_start = ex['event']['trigger']['start']
trigger_end = ex['event']['trigger']['end']
predicted_set = set()
for argname in predicted_args:
for entity in predicted_args[argname]:# this argument span is inclusive
arg_span = find_arg_span(entity, context_words,
trigger_start, trigger_end, head_only=args.head_only, doc=doc)
if arg_span:# if None means hullucination
predicted_set.add((arg_span[0], arg_span[1], evt_type, argname))
else:
new_entity = []
for w in entity:
if w == 'and' and len(new_entity) >0:
arg_span = find_arg_span(new_entity, context_words, trigger_start, trigger_end,
head_only=args.head_only, doc=doc)
if arg_span: predicted_set.add((arg_span[0], arg_span[1], evt_type, argname))
new_entity = []
else:
new_entity.append(w)
if len(new_entity) >0: # last entity
arg_span = find_arg_span(new_entity, context_words, trigger_start, trigger_end,
head_only=args.head_only, doc=doc)
if arg_span: predicted_set.add((arg_span[0], arg_span[1], evt_type, argname))
gold_set = set()
gold_canonical_set = set() # set of canonical mention ids, singleton mentions will not be here
# check if this event is in the gold events
for e in gold_evt_dict[doc_id]:
if (e['event_type'] == evt_type) and (e['trigger'] == ex['event']['trigger']):
# trigger extraction is correct
for arg in e['arguments']:
argname = arg['role']
entity_id = arg['entity_id']
span = get_entity_span(ex, entity_id)
span = (span[0], span[1]-1)
span = clean_span(ex, span)
# clean up span by removing `a` `the`
if args.head_only and span[0]!=span[1]:
span = find_head(span[0], span[1], doc=doc)
gold_set.add((span[0], span[1], evt_type, argname))
if span in coref_mapping[doc_id]:
canonical_id = coref_mapping[doc_id][span]
gold_canonical_set.add((canonical_id, evt_type, argname))
pred_arg_num += len(predicted_set)
# check matches
for pred_arg in predicted_set:
arg_start, arg_end, event_type, role = pred_arg
gold_idn = {item for item in gold_set
if item[0] == arg_start and item[1] == arg_end
and item[2] == event_type}
if gold_idn:
arg_idn_num += 1
gold_class = {item for item in gold_idn if item[-1] == role}
if gold_class:
arg_class_num += 1
elif args.coref:# check coref matches
arg_start, arg_end, event_type, role = pred_arg
span = (arg_start, arg_end)
if span in coref_mapping[doc_id]:
canonical_id = coref_mapping[doc_id][span]
gold_idn_coref = {item for item in gold_canonical_set
if item[0] == canonical_id and item[1] == event_type}
if gold_idn_coref:
arg_idn_coref_num +=1
gold_class_coref = {item for item in gold_idn_coref
if item[2] == role}
if gold_class_coref:
arg_class_coref_num +=1
if args.head_only:
print('Evaluation by matching head words only....')
role_id_prec, role_id_rec, role_id_f = compute_f1(
pred_arg_num, gold_arg_num, arg_idn_num)
role_prec, role_rec, role_f = compute_f1(
pred_arg_num, gold_arg_num, arg_class_num)
print('Role identification: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_id_prec * 100.0, role_id_rec * 100.0, role_id_f * 100.0))
print('Role: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_prec * 100.0, role_rec * 100.0, role_f * 100.0))
if args.coref:
role_id_prec, role_id_rec, role_id_f = compute_f1(
pred_arg_num, gold_arg_num, arg_idn_num + arg_idn_coref_num)
role_prec, role_rec, role_f = compute_f1(
pred_arg_num, gold_arg_num, arg_class_num + arg_class_coref_num)
print('Coref Role identification: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_id_prec * 100.0, role_id_rec * 100.0, role_id_f * 100.0))
print('Coref Role: P: {:.2f}, R: {:.2f}, F: {:.2f}'.format(
role_prec * 100.0, role_rec * 100.0, role_f * 100.0))
|