File size: 36,382 Bytes
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import torch 
import re 
from torch import nn 
from torch.nn import functional as F 
from transformers import (
    BartModel,   
)
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers.generation_utils import top_k_top_p_filtering
from typing import Iterable, List, Optional
from transformers.file_utils import ModelOutput

print("constrained.py")
class BartConstrainedGen(PreTrainedModel):
    def __init__(self, config, tokenizer):
        super(BartConstrainedGen, self).__init__(config)
        self.config = config 
        self.tokenizer = tokenizer 
        self.transformer = BartModel.from_pretrained('facebook/bart-large')
        self.register_buffer("final_logits_bias", torch.zeros((1, self.transformer.shared.num_embeddings)))

        
    def resize_token_embeddings(self):
        old_num_tokens = self.transformer.shared.num_embeddings
        new_embeddings = self.transformer.resize_token_embeddings(len(self.tokenizer))
        self.transformer.shared = new_embeddings
        self._resize_final_logits_bias(len(self.tokenizer), old_num_tokens)
        self.vocab_size = len(self.tokenizer) 

        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int, old_num_tokens: int) -> None:
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)


    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, torch.nn.LayerNorm): # if use apex, this should be FusedLayerNorm 
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


    def get_encoder(self):
        return self.transformer.encoder 

        
    def get_output_embeddings(self):
        # this method is needed for generation
        vocab_size, emb_size = self.transformer.shared.weight.shape
        lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
        lin_layer.weight.data = self.transformer.shared.weight.data
        return lin_layer 


    def prepare_inputs_for_generation(
        self, decoder_input_ids, past, attention_mask, use_cache, encoder_outputs, input_embeds, encoder_input_ids, **kwargs):
        return {
            "input_ids": encoder_input_ids,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
            "input_embeds": input_embeds,
        }

    def adjust_logits_during_generation(self, logits, cur_len, max_length):
        if cur_len == 1 and self.config.force_bos_token_to_be_generated:
            self._force_token_ids_generation(logits, self.config.bos_token_id)
        elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
            self._force_token_ids_generation(logits, self.config.eos_token_id)
        return logits

    def _force_token_ids_generation(self, scores, token_id) -> None:
        """force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
        scores[:, [x for x in range(self.config.vocab_size) if x != token_id]] = -float("inf")

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = []
        for layer_past in past:
            # get the correct batch idx from decoder layer's batch dim for cross and self-attn
            layer_past_new = {
                attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
            }
            reordered_past.append(layer_past_new)
        return reordered_past
    
    
    def convert_pointer_logits_to_lm_logits(self, pointer_logits, input_ids):
        '''
        pointer_logits: (batch, seq_len, input_seq_len)
        input_ids: (batch, input_seq_len)
        lm_logits: (batch, seq_len, vocab_size)
        '''
        batch_size = pointer_logits.size(0)
        seq_len = pointer_logits.size(1)
        input_seq_len = input_ids.size(1)
        lm_logits = torch.full((batch_size, seq_len, self.vocab_size), fill_value=-1000,dtype=pointer_logits.dtype).to(pointer_logits.device)
        
        
        #  scatter may be technically incorrect for duplicate indexes, but not using it gets slow 
        index = input_ids.unsqueeze(dim=1).expand_as(pointer_logits)
        lm_logits.scatter_(dim=2, index=index, src=pointer_logits)


        
        return lm_logits 

    def remove_unseen(self, lm_logits, input_ids):
        # input_ids (batch, seq)
        seen_lm_logits = torch.full_like(lm_logits, fill_value=-1000).to(lm_logits.device) #(batch, seq, vocab)
        seen_vocab = set(input_ids.reshape(-1).tolist())
        for i in range(self.transformer.vocab_size):
            if i in (seen_vocab):
                seen_lm_logits[:, :, i] = lm_logits[:, :, i]
            elif i == self.tokenizer.encode(' and', add_special_tokens=False)[0]:
                seen_lm_logits[:, :, i] = lm_logits[:, :, i]
        return seen_lm_logits 


    def forward(self, input_ids, 
        attention_mask=None, 
        encoder_outputs=None, 
        use_cache=False,
        past_key_values=None,
        decoder_input_ids=None, 
        decoder_attention_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None, 
        input_embeds=None,
        task=-1):

        # generation
        if task==-1:
            outputs = self.transformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            use_cache=use_cache, 
            encoder_outputs=encoder_outputs,
            past_key_values=past_key_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            input_embeds = input_embeds,
            return_dict=return_dict,)

            
            decoder_output = outputs[0] #(batch, seq_len, hidden_dim)
            if encoder_outputs==None:
                encoder_outputs = outputs[1] # (batch, input_seq_len, hidden_dim) 
                # BaseModelOutput if return dict  

            if input_embeds==None:
                # get encoder side embeddings 
                input_embeds = self.transformer.encoder.embed_tokens(input_ids) * self.transformer.encoder.embed_scale #(batch, seq_len, input_seq_len)
            pointer_logits = torch.einsum('ijk,ilk->ijl', decoder_output, input_embeds) #(batch, seq_len, input_seq_len)
            lm_logits = self.convert_pointer_logits_to_lm_logits(pointer_logits, input_ids)

            
            masked_lm_loss = None
            
            if not return_dict:
                output = (lm_logits,) + outputs[1:]
                return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

            return Seq2SeqLMOutput(
                loss=masked_lm_loss,
                logits=lm_logits,
                past_key_values=outputs.past_key_values,
                decoder_hidden_states=outputs.decoder_hidden_states,
                decoder_attentions=outputs.decoder_attentions,
                encoder_last_hidden_state=outputs.encoder_last_hidden_state,
                encoder_hidden_states=outputs.encoder_hidden_states,
                encoder_attentions=outputs.encoder_attentions,
            )
            
        #training 
        elif task==0:
            
            assert(decoder_input_ids!=None)
            y_ids = decoder_input_ids[:, :-1] 
            labels = decoder_input_ids[:, 1:].clone() 
            labels[labels== self.tokenizer.pad_token_id] = -100 
            # labels are just decoder_input_ids shifted to the right by 1 
            
            outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=y_ids,
            decoder_attention_mask=decoder_attention_mask[:, :-1],
            use_cache=False, 
            past_key_values=past_key_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,)
            
            decoder_output = outputs[0] #(batch, seq_len, hidden_dim)
            encoder_output = outputs[1] # (batch, input_seq_len, hidden_dim)
            # lm_logits = F.linear(decoder_output, self.transformer.shared.weight, bias=self.final_logits_bias)
            # lm_logits = self.remove_unseen(lm_logits, input_ids)
            # get encoder side embeddings 
            input_embeds = self.transformer.encoder.embed_tokens(input_ids) * self.transformer.encoder.embed_scale #(batch, seq_len, input_seq_len)

            pointer_logits = torch.einsum('ijk,ilk->ijl', decoder_output, input_embeds) #(batch, seq_len, input_seq_len)
            # decrease <arg> prob if neccesary 

            lm_logits = self.convert_pointer_logits_to_lm_logits(pointer_logits, input_ids)

            outputs = (lm_logits,) + outputs[1:]  # Add cache, hidden states and attention if they are here
            loss_fct = nn.CrossEntropyLoss()

            masked_lm_loss = loss_fct(lm_logits.view(-1, self.vocab_size), labels.view(-1))
            outputs = (masked_lm_loss,) + outputs

            return outputs

    


    # # this is a simplified generate class for the pointer generator taken from https://github.com/huggingface/transformers/blob/v3.1.0/src/transformers/generation_utils.py
    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        max_length: Optional[int] = None,
        min_length: Optional[int] = None,
        do_sample: Optional[bool] = None,
        early_stopping: Optional[bool] = None,
        num_beams: Optional[int] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        bad_words_ids: Optional[Iterable[int]] = None,
        bos_token_id: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        length_penalty: Optional[float] = None,
        no_repeat_ngram_size: Optional[int] = None,
        num_return_sequences: Optional[int] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        decoder_start_token_id: Optional[int] = None,
        use_cache: Optional[bool] = None,
        **model_kwargs
    ) -> torch.LongTensor:
        r"""
        Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
        beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling.
        Adapted in part from `Facebook's XLM beam search code
        <https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529>`__.
        Apart from :obj:`input_ids` and :obj:`attention_mask`, all the arguments below will default to the value of the
        attribute of the same name inside the :class:`~transformers.PretrainedConfig` of the model. The default values
        indicated are the default values of those config.
        Most of these parameters are explained in more detail in `this blog post
        <https://huggingface.co/blog/how-to-generate>`__.
        Parameters:
            input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
                The sequence used as a prompt for the generation. If :obj:`None` the method initializes
                it as an empty :obj:`torch.LongTensor` of shape :obj:`(1,)`.
            max_length (:obj:`int`, `optional`, defaults to 20):
                The maximum length of the sequence to be generated.
            min_length (:obj:`int`, `optional`, defaults to 10):
                The minimum length of the sequence to be generated.
            do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to use sampling ; use greedy decoding otherwise.
            early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not.
            num_beams (:obj:`int`, `optional`, defaults to 1):
                Number of beams for beam search. 1 means no beam search.
            temperature (:obj:`float`, `optional`, defaults tp 1.0):
                The value used to module the next token probabilities.
            top_k (:obj:`int`, `optional`, defaults to 50):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (:obj:`float`, `optional`, defaults to 1.0):
                If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or
                higher are kept for generation.
            repetition_penalty (:obj:`float`, `optional`, defaults to 1.0):
                The parameter for repetition penalty. 1.0 means no penalty. See `this paper
                <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
            pad_token_id (:obj:`int`, `optional`):
                The id of the `padding` token.
            bos_token_id (:obj:`int`, `optional`):
                The id of the `beginning-of-sequence` token.
            eos_token_id (:obj:`int`, `optional`):
                The id of the `end-of-sequence` token.
            length_penalty (:obj:`float`, `optional`, defaults to 1.0):
                Exponential penalty to the length. 1.0 means no penalty.
                Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in
                order to encourage the model to produce longer sequences.
            no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0):
                If set to int > 0, all ngrams of that size can only occur once.
            bad_words_ids(:obj:`List[int]`, `optional`):
                List of token ids that are not allowed to be generated. In order to get the tokens of the words that
                should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, add_prefix_space=True)`.
            num_return_sequences(:obj:`int`, `optional`, defaults to 1):
                The number of independently computed returned sequences for each element in the batch.
            attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
                Mask to avoid performing attention on padding token indices. Mask values are in ``[0, 1]``, 1 for
                tokens that are not masked, and 0 for masked tokens.
                If not provided, will default to a tensor the same shape as :obj:`input_ids` that masks the pad token.
                `What are attention masks? <../glossary.html#attention-mask>`__
            decoder_start_token_id (:obj:`int`, `optional`):
                If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
            use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not the model should use the past last key/values attentions (if applicable to the model) to
                speed up decoding.
            model_kwargs:
                Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.
        Return:
            :obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`:
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        Examples::
            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from S3 and cache.
            outputs = model.generate(max_length=40)  # do greedy decoding
            print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('openai-gpt')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('openai-gpt')    # Download model and configuration from S3 and cache.
            input_context = 'The dog'
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5)  # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
            for i in range(3): #  3 output sequences were generated
                print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from S3 and cache.
            input_context = 'The dog'
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True)  # generate 3 candidates using sampling
            for i in range(3): #  3 output sequences were generated
                print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('ctrl')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('ctrl')    # Download model and configuration from S3 and cache.
            input_context = 'Legal My neighbor is'  # "Legal" is one of the control codes for ctrl
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2)  # generate sequences
            print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('gpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('gpt2')    # Download model and configuration from S3 and cache.
            input_context = 'My cute dog'  # "Legal" is one of the control codes for ctrl
            bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']]
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids)  # generate sequences without allowing bad_words to be generated
        """

        max_length = max_length if max_length is not None else self.config.max_length
        min_length = min_length if min_length is not None else self.config.min_length
        do_sample = do_sample if do_sample is not None else self.config.do_sample
        early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        num_beams = num_beams if num_beams is not None else self.config.num_beams
        temperature = temperature if temperature is not None else self.config.temperature
        top_k = top_k if top_k is not None else self.config.top_k
        top_p = top_p if top_p is not None else self.config.top_p
        repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
        bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
        pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
        length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
        no_repeat_ngram_size = (
            no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
        )
        bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
        num_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
        )
        decoder_start_token_id = (
            decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
        )

        if input_ids is not None:
            batch_size = input_ids.shape[0]  # overriden by the input batch_size
        else:
            batch_size = 1

        assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer."
        assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer."
        assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
        assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean."
        assert isinstance(use_cache, bool), "`use_cache` should be a boolean."
        assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer."
        assert temperature > 0, "`temperature` should be strictly positive."
        assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
        assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
        assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
        assert input_ids is not None or (
            isinstance(bos_token_id, int) and bos_token_id >= 0
        ), "If input_ids is not defined, `bos_token_id` should be a positive integer."
        assert pad_token_id is None or (
            isinstance(pad_token_id, int) and (pad_token_id >= 0)
        ), "`pad_token_id` should be a positive integer."
        assert (eos_token_id is None) or (
            isinstance(eos_token_id, int) and (eos_token_id >= 0)
        ), "`eos_token_id` should be a positive integer."
        assert length_penalty > 0, "`length_penalty` should be strictly positive."
        assert (
            isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0
        ), "`no_repeat_ngram_size` should be a positive integer."
        assert (
            isinstance(num_return_sequences, int) and num_return_sequences > 0
        ), "`num_return_sequences` should be a strictly positive integer."
        assert (
            bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
        ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"

        if input_ids is None:
            assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
                "you should either supply a context to complete as `input_ids` input "
                "or a `bos_token_id` (integer >= 0) as a first token to start the generation."
            )
            input_ids = torch.full(
                (batch_size, 1),
                bos_token_id,
                dtype=torch.long,
                device=next(self.parameters()).device,
            )
        else:
            assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."

        # not allow to duplicate outputs when greedy decoding
        if do_sample is False:
            if num_beams == 1:
                # no_beam_search greedy generation conditions
                assert (
                    num_return_sequences == 1
                ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1"

            else:
                # beam_search greedy generation conditions
                assert (
                    num_beams >= num_return_sequences
                ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"

        # create attention mask if necessary
        # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140
        if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids):
            attention_mask = input_ids.ne(pad_token_id).long()
        elif attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)

        # set pad_token_id to eos_token_id if not set. Important that this is done after
        # attention_mask is created
        if pad_token_id is None and eos_token_id is not None:
            pad_token_id = eos_token_id

        # current position and vocab size
        if hasattr(self.config, "vocab_size"):
            vocab_size = self.config.vocab_size
        elif (
            self.config.is_encoder_decoder
            and hasattr(self.config, "decoder")
            and hasattr(self.config.decoder, "vocab_size")
        ):
            vocab_size = self.config.decoder.vocab_size

        # set effective batch size and effective batch multiplier according to do_sample
        if do_sample:
            effective_batch_size = batch_size * num_return_sequences
            effective_batch_mult = num_return_sequences
        else:
            effective_batch_size = batch_size
            effective_batch_mult = 1

        if self.config.is_encoder_decoder:
            if decoder_start_token_id is None:
                # see if BOS token can be used for decoder_start_token_id
                if bos_token_id is not None:
                    decoder_start_token_id = bos_token_id
                elif hasattr(self.config, "decoder") and hasattr(self.config.decoder, "bos_token_id"):
                    decoder_start_token_id = self.config.decoder.bos_token_id
                else:
                    raise ValueError(
                        "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation"
                    )

            assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self)
            assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder)

            # get encoder and store encoder outputs
            encoder = self.get_encoder()
            encoder_outputs: ModelOutput = encoder(input_ids, attention_mask=attention_mask, return_dict=True)
            input_embeds = encoder.embed_tokens(input_ids)  * encoder.embed_scale 

        # Expand input ids if num_beams > 1 or num_return_sequences > 1
        if num_return_sequences > 1 or num_beams > 1:
            input_ids_len = input_ids.shape[-1]
            input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
            attention_mask = attention_mask.unsqueeze(1).expand(
                batch_size, effective_batch_mult * num_beams, input_ids_len
            )

            input_ids = input_ids.contiguous().view(
                effective_batch_size * num_beams, input_ids_len
            )  # shape: (batch_size * num_return_sequences * num_beams, cur_len)
            attention_mask = attention_mask.contiguous().view(
                effective_batch_size * num_beams, input_ids_len
            )  # shape: (batch_size * num_return_sequences * num_beams, cur_len)

        encoder_input_ids = input_ids 

        if self.config.is_encoder_decoder:
            # create empty decoder_input_ids
            input_ids = torch.full(
                (effective_batch_size * num_beams, 1),
                decoder_start_token_id,
                dtype=torch.long,
                device=next(self.parameters()).device,
            )
            cur_len = 1

            assert (
                batch_size == encoder_outputs.last_hidden_state.shape[0]
            ), f"expected encoder_outputs.last_hidden_state to have 1st dimension bs={batch_size}, got {encoder_outputs.last_hidden_state.shape[0]} "

            # expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
            expanded_batch_idxs = (
                torch.arange(batch_size)
                .view(-1, 1)
                .repeat(1, num_beams * effective_batch_mult)
                .view(-1)
                .to(input_ids.device)
            )

            # expand encoder_outputs
            encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
                0, expanded_batch_idxs
            )

            # save encoder_outputs in `model_kwargs`
            model_kwargs["encoder_outputs"] = encoder_outputs
            model_kwargs["input_embeds"] = input_embeds
            model_kwargs["encoder_input_ids"] = encoder_input_ids

        else:
            cur_len = input_ids.shape[-1]

        assert (
            cur_len < max_length
        ), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`"

        output = self._generate_no_beam_search(
                input_ids,
                cur_len=cur_len,
                max_length=max_length,
                min_length=min_length,
                do_sample=do_sample,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                batch_size=effective_batch_size,
                attention_mask=attention_mask,
                use_cache=use_cache,
                model_kwargs=model_kwargs,
            )

        return output

    def _generate_no_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        min_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        no_repeat_ngram_size,
        bad_words_ids,
        pad_token_id,
        eos_token_id,
        batch_size,
        attention_mask,
        use_cache,
        model_kwargs,
    ):
        """Generate sequences for each example without beam search (num_beams == 1).
        All returned sequence are generated independantly.
        """
        # length of generated sentences / unfinished sentences
        unfinished_sents = input_ids.new(batch_size).fill_(1)
        sent_lengths = input_ids.new(batch_size).fill_(max_length)

        past = None
        while cur_len < max_length:
            model_inputs = self.prepare_inputs_for_generation(
                input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs
            )
            
            outputs = self(**model_inputs, return_dict=True) 
            # calling forward here 
            
            #outputs.logits (batch, seq_len, input_seq_len)
            next_token_logits = outputs.logits[:, -1, :]

            scores = self.postprocess_next_token_scores(
                scores=next_token_logits,
                input_ids=input_ids,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                cur_len=cur_len,
                min_length=min_length,
                max_length=max_length,
                eos_token_id=eos_token_id,
                repetition_penalty=repetition_penalty,
                batch_size=batch_size,
                num_beams=1,
            )

            # if model has past, then set the past variable to speed up decoding
            if "past_key_values" in outputs:
                past = outputs.past_key_values
            elif "mems" in outputs:
                past = outputs.mems

            if do_sample:
                # Temperature (higher temperature => more likely to sample low probability tokens)
                if temperature != 1.0:
                    scores = scores / temperature
                # Top-p/top-k filtering
                next_token_logscores = top_k_top_p_filtering(scores, top_k=top_k, top_p=top_p)
                # Sample
                probs = F.softmax(next_token_logscores, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                # Greedy decoding
                next_token = torch.argmax(next_token_logits, dim=-1)

            # update generations and finished sentences
            if eos_token_id is not None:
                # pad finished sentences if eos_token_id exist
                tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
            else:
                tokens_to_add = next_token

            # add token and increase length by one
            input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
            cur_len = cur_len + 1

            if eos_token_id is not None:
                eos_in_sents = tokens_to_add == eos_token_id
                # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
                is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool()
                sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len)
                # unfinished_sents is set to zero if eos in sentence
                unfinished_sents.mul_((~eos_in_sents).long())

            # stop when there is a </s> in each sentence, or if we exceed the maximul length
            if unfinished_sents.max() == 0:
                break

            # extend attention_mask for new generated input if only decoder
            if self.config.is_encoder_decoder is False:
                attention_mask = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )

        return input_ids
    
    # Function from `generation_utils.py` of Transformers library
    def postprocess_next_token_scores(
        self,
        scores,
        input_ids,
        no_repeat_ngram_size,
        bad_words_ids,
        cur_len,
        min_length,
        max_length,
        eos_token_id,
        repetition_penalty,
        batch_size,
        num_beams,
    ):
        # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
        if repetition_penalty != 1.0:
            self.enforce_repetition_penalty_(
                scores,
                batch_size,
                num_beams,
                input_ids,
                repetition_penalty,
            )

        # set eos token prob to zero if min_length is not reached
        if eos_token_id is not None and cur_len < min_length:
            scores[:, eos_token_id] = -float("inf")

        return scores