Spaces:
Build error
Build error
File size: 11,380 Bytes
6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import json
import jsonlines
import re
import random
from collections import defaultdict
import argparse
import transformers
from transformers import BartTokenizer
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from .data import IEDataset, my_collate
MAX_LENGTH = 424
MAX_TGT_LENGTH = 72
DOC_STRIDE = 256
print("data_module4.py")
class RAMSDataModule(pl.LightningDataModule):
def __init__(self, args):
super().__init__()
self.hparams = args
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>', ' <tgr>'])
def get_event_type(self, ex):
evt_type = []
for evt in ex['evt_triggers']:
for t in evt[2]:
evt_type.append(t[0])
return evt_type
def create_gold_gen(self, ex, ontology_dict, mark_trigger=True):
# 设置三个总列表、存放输入模板、输出模板
INPUT = []
OUTPUT = []
CONTEXT = []
evt_type = self.get_event_type(ex)[0]
context_words = [w for sent in ex['sentences'] for w in sent]
input_template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
i = len(input_template)
input_list = []
for x in range(i):
str = re.sub(r'<arg\d>', '<arg>', input_template[x])
input_list.append(str)
# 其中input_list种存放的是 原始数据中<arg1> 全部替换为 <arg> 之后的模板 下一步应该进行分词
temp = []
for x in range(i):
space_tokenized_template = input_list[x].split(' ')
temp.append(space_tokenized_template)
space_tokenized_template = []
# 其中temp中存放的都是分词后的模板 下一步对temp中的所有元素进行tokenize
tokenized_input_template = []
for x in range(len(temp)):
for w in temp[x]:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
INPUT.append(tokenized_input_template)
tokenized_input_template = []
template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
for lidx, triple in enumerate(ex['gold_evt_links']):
# 触发词 论元 论元
# 例子: "gold_evt_links":
# [[[40, 40], [33, 33], "evt089arg01victim"],
# [[40, 40], [28, 28], "evt089arg02place"]]
trigger_span, argument_span, arg_name = triple
# 第几个论元
arg_num = ontology_dict[evt_type.replace('n/a', 'unspecified')][arg_name]
# 具体论元内容 短语
arg_text = ' '.join(context_words[argument_span[0]:argument_span[1] + 1])
# 通过正则表达式的方式将模板中的每个<arg> 替换为具体的论元内容
for index in range(len(template)):
if arg_num in template[index]:
break
else:
continue
template[index] = re.sub('<{}>'.format(arg_num), arg_text, template[index])
trigger = ex['evt_triggers'][0]
if mark_trigger:
trigger_span_start = trigger[0]
trigger_span_end = trigger[1] + 2 # one for inclusion, one for extra start marker
# 触发词之前的单词
prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger[0]]), add_prefix_space=True)
# 触发词短语
tgt = self.tokenizer.tokenize(' '.join(context_words[trigger[0]: trigger[1] + 1]),
add_prefix_space=True)
# 触发词之后的单词
suffix = self.tokenizer.tokenize(' '.join(context_words[trigger[1] + 1:]), add_prefix_space=True)
context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
else:
context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
# 将context放入CONTEXT中
for w in range(i):
CONTEXT.append(context)
output_template = []
# 此时的template中已经全部替换为论元短语 这部是将<arg1> 替换为<arg>
for i in range(len(template)):
output_template.append(re.sub(r'<arg\d>', '<arg>', template[i]))
spaceout_tokenized_template = []
for i in range(len(output_template)):
spaceout_tokenized_template.append(output_template[i].split(' '))
tokenized_out_template = []
for i in range(len(spaceout_tokenized_template)):
for w in spaceout_tokenized_template[i]:
tokenized_out_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
OUTPUT.append(tokenized_out_template)
tokenized_out_template = []
return INPUT, OUTPUT, CONTEXT
def load_ontology(self):
ontology_dict = {}
with open('aida_ontology_fj-5.csv', 'r') as f:
for lidx, line in enumerate(f):
if lidx == 0: # header
continue
fields = line.strip().split(',')
if len(fields) < 2:
break
evt_type = fields[0]
if evt_type in ontology_dict.keys():
args = fields[2:]
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
else:
ontology_dict[evt_type] = {}
args = fields[2:]
ontology_dict[evt_type]['template'] = []
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
return ontology_dict
def prepare_data(self):
if not os.path.exists('span_templates_preprocessed_data1'):
os.makedirs('span_templates_preprocessed_data1')
ontology_dict = self.load_ontology()
# print(ontology_dict['contact.prevarication.broadcast'])
for split, f in [('train', self.hparams.train_file), ('val', self.hparams.val_file),
('test', self.hparams.test_file)]:
with open(f, 'r') as reader, open('span_templates_preprocessed_data1/{}.jsonl'.format(split), 'w') as writer:
for lidx, line in enumerate(reader):
ex = json.loads(line.strip())
input_template, output_template, context = self.create_gold_gen(ex, ontology_dict,
self.hparams.mark_trigger)
ontology_dict = self.load_ontology()
length = len(input_template)
# print(input_template)
# print(output_template)
# print(context)
for i in range(length):
input_tokens = self.tokenizer.encode_plus(input_template[i], context[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
# target_tokens
tgt_tokens = self.tokenizer.encode_plus(output_template[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_TGT_LENGTH,
truncation=True,
padding='max_length')
# input_ids 单词在词典中的编码
# tgt_tokens 指定对哪些词进行self_attention操作
processed_ex = {
# 'idx': lidx,
'doc_key': ex['doc_key'],
'input_token_ids': input_tokens['input_ids'],
'input_attn_mask': input_tokens['attention_mask'],
'tgt_token_ids': tgt_tokens['input_ids'],
'tgt_attn_mask': tgt_tokens['attention_mask'],
}
#print(processed_ex)
writer.write(json.dumps(processed_ex) + "\n")
def train_dataloader(self):
dataset = IEDataset('span_templates_preprocessed_data1/train.jsonl')
dataloader = DataLoader(dataset,
pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.train_batch_size,
shuffle=True)
return dataloader
def val_dataloader(self):
dataset = IEDataset('span_templates_preprocessed_data1/val.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
def test_dataloader(self):
dataset = IEDataset('span_templates_preprocessed_data1/test.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file', type=str, default='data/RAMS_1.0/data/train.jsonlines')
parser.add_argument('--val-file', type=str, default='data/RAMS_1.0/data/dev.jsonlines')
parser.add_argument('--test-file', type=str, default='data/RAMS_1.0/data/test.jsonlines')
parser.add_argument('--train_batch_size', type=int, default=2)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--mark-trigger', action='store_true', default=True)
args = parser.parse_args()
print("data_module1.pyaaaaaaaaaaaaaaa")
dm = RAMSDataModule(args=args)
dm.prepare_data()
# training dataloader
dataloader = dm.train_dataloader()
for idx, batch in enumerate(dataloader):
print(batch)
break
# val dataloader
|