File size: 11,380 Bytes
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44a9d55
 
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44a9d55
 
 
 
6c25ddb
44a9d55
6c25ddb
44a9d55
 
 
 
 
 
 
 
 
 
 
 
 
6c25ddb
44a9d55
 
 
 
 
 
 
6c25ddb
 
 
 
 
 
 
 
 
 
44a9d55
 
 
 
 
 
 
 
 
6c25ddb
 
 
 
 
 
 
 
44a9d55
 
6c25ddb
 
 
 
 
44a9d55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c25ddb
 
 
44a9d55
6c25ddb
 
 
 
 
 
 
44a9d55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c25ddb
 
 
44a9d55
6c25ddb
44a9d55
 
6c25ddb
 
 
44a9d55
 
6c25ddb
 
44a9d55
6c25ddb
 
 
 
44a9d55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c25ddb
 
44a9d55
6c25ddb
 
 
 
 
 
 
 
 
44a9d55
6c25ddb
 
 
 
 
 
 
44a9d55
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import json
import jsonlines
import re
import random
from collections import defaultdict
import argparse

import transformers
from transformers import BartTokenizer
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl

from .data import IEDataset, my_collate

MAX_LENGTH = 424
MAX_TGT_LENGTH = 72
DOC_STRIDE = 256

print("data_module4.py")

class RAMSDataModule(pl.LightningDataModule):
    def __init__(self, args):
        super().__init__()
        self.hparams = args
        self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
        self.tokenizer.add_tokens([' <arg>', ' <tgr>'])

    def get_event_type(self, ex):
        evt_type = []
        for evt in ex['evt_triggers']:
            for t in evt[2]:
                evt_type.append(t[0])
        return evt_type

    def create_gold_gen(self, ex, ontology_dict, mark_trigger=True):
        # 设置三个总列表、存放输入模板、输出模板
        INPUT = []
        OUTPUT = []
        CONTEXT = []
        evt_type = self.get_event_type(ex)[0]
        
        context_words = [w for sent in ex['sentences'] for w in sent]
        input_template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
        i = len(input_template)
        input_list = []
        for x in range(i):
            str = re.sub(r'<arg\d>', '<arg>', input_template[x])
            input_list.append(str)
        # 其中input_list种存放的是 原始数据中<arg1> 全部替换为 <arg> 之后的模板 下一步应该进行分词
        temp = []
        for x in range(i):
            space_tokenized_template = input_list[x].split(' ')
            temp.append(space_tokenized_template)
            space_tokenized_template = []
        # 其中temp中存放的都是分词后的模板 下一步对temp中的所有元素进行tokenize
        tokenized_input_template = []
        for x in range(len(temp)):
            for w in temp[x]:
                tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
            INPUT.append(tokenized_input_template)
            tokenized_input_template = []
        template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
        for lidx, triple in enumerate(ex['gold_evt_links']):
            # 触发词 论元 论元
            # 例子: "gold_evt_links":
            # [[[40, 40], [33, 33], "evt089arg01victim"],
            #  [[40, 40], [28, 28], "evt089arg02place"]]
            trigger_span, argument_span, arg_name = triple
            # 第几个论元
            arg_num = ontology_dict[evt_type.replace('n/a', 'unspecified')][arg_name]
            # 具体论元内容 短语
            arg_text = ' '.join(context_words[argument_span[0]:argument_span[1] + 1])
            # 通过正则表达式的方式将模板中的每个<arg>  替换为具体的论元内容
            for index in range(len(template)):
                if arg_num in template[index]:
                    break
                else:
                    continue

        
            template[index] = re.sub('<{}>'.format(arg_num), arg_text, template[index])
            

        trigger = ex['evt_triggers'][0]
        if mark_trigger:
            trigger_span_start = trigger[0]
            trigger_span_end = trigger[1] + 2  # one for inclusion, one for extra start marker
            # 触发词之前的单词
            prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger[0]]), add_prefix_space=True)
            # 触发词短语
            tgt = self.tokenizer.tokenize(' '.join(context_words[trigger[0]: trigger[1] + 1]),
                                          add_prefix_space=True)
            # 触发词之后的单词
            suffix = self.tokenizer.tokenize(' '.join(context_words[trigger[1] + 1:]), add_prefix_space=True)
            context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
        else:
            context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
        # 将context放入CONTEXT中
        for w in range(i):
            CONTEXT.append(context)
        output_template = []
        # 此时的template中已经全部替换为论元短语 这部是将<arg1> 替换为<arg>
        for i in range(len(template)):
            output_template.append(re.sub(r'<arg\d>', '<arg>', template[i]))
        spaceout_tokenized_template = []
        for i in range(len(output_template)):
            spaceout_tokenized_template.append(output_template[i].split(' '))
        tokenized_out_template = []
        for i in range(len(spaceout_tokenized_template)):
            for w in spaceout_tokenized_template[i]:
                tokenized_out_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
            OUTPUT.append(tokenized_out_template)
            tokenized_out_template = []

        return INPUT, OUTPUT, CONTEXT

    def load_ontology(self):
        ontology_dict = {}
        with open('aida_ontology_fj-5.csv', 'r') as f:
            for lidx, line in enumerate(f):
                if lidx == 0:  # header
                    continue
                fields = line.strip().split(',')
                if len(fields) < 2:
                    break
                evt_type = fields[0]
                if evt_type in ontology_dict.keys():
                    args = fields[2:]
                    ontology_dict[evt_type]['template'].append(fields[1])
                    for i, arg in enumerate(args):
                        if arg != '':
                            ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
                            ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
                else:
                    ontology_dict[evt_type] = {}
                    args = fields[2:]
                    ontology_dict[evt_type]['template'] = []
                    ontology_dict[evt_type]['template'].append(fields[1])
                    for i, arg in enumerate(args):
                        if arg != '':
                            ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
                            ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)

        return ontology_dict


    def prepare_data(self):
        if not os.path.exists('span_templates_preprocessed_data1'):
            os.makedirs('span_templates_preprocessed_data1')

            ontology_dict = self.load_ontology()

            # print(ontology_dict['contact.prevarication.broadcast'])
            
            for split, f in [('train', self.hparams.train_file), ('val', self.hparams.val_file),
                             ('test', self.hparams.test_file)]:
                with open(f, 'r') as reader, open('span_templates_preprocessed_data1/{}.jsonl'.format(split), 'w') as writer:
                    for lidx, line in enumerate(reader):
                        ex = json.loads(line.strip())
                        input_template, output_template, context = self.create_gold_gen(ex, ontology_dict,
                                                                                        self.hparams.mark_trigger)
                        ontology_dict = self.load_ontology()
                        length = len(input_template)
                        # print(input_template)
                        # print(output_template)
                        # print(context)
                        for i in range(length):
                            input_tokens = self.tokenizer.encode_plus(input_template[i], context[i],
                                                                      add_special_tokens=True,
                                                                      add_prefix_space=True,
                                                                      max_length=MAX_LENGTH,
                                                                      truncation='only_second',
                                                                      padding='max_length')
                            # target_tokens
                            tgt_tokens = self.tokenizer.encode_plus(output_template[i],
                                                                    add_special_tokens=True,
                                                                    add_prefix_space=True,
                                                                    max_length=MAX_TGT_LENGTH,
                                                                    truncation=True,
                                                                    padding='max_length')
                            # input_ids 单词在词典中的编码
                            # tgt_tokens 指定对哪些词进行self_attention操作
                            processed_ex = {
                                # 'idx': lidx,
                                'doc_key': ex['doc_key'],
                                'input_token_ids': input_tokens['input_ids'],
                                'input_attn_mask': input_tokens['attention_mask'],
                                'tgt_token_ids': tgt_tokens['input_ids'],
                                'tgt_attn_mask': tgt_tokens['attention_mask'],
                            }
                            #print(processed_ex)
                            writer.write(json.dumps(processed_ex) + "\n")

    def train_dataloader(self):
        dataset = IEDataset('span_templates_preprocessed_data1/train.jsonl')

        dataloader = DataLoader(dataset,
                                pin_memory=True, num_workers=2,
                                collate_fn=my_collate,
                                batch_size=self.hparams.train_batch_size,
                                shuffle=True)
        return dataloader

    def val_dataloader(self):
        dataset = IEDataset('span_templates_preprocessed_data1/val.jsonl')

        dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
                                collate_fn=my_collate,
                                batch_size=self.hparams.eval_batch_size, shuffle=False)
        return dataloader

    def test_dataloader(self):
        dataset = IEDataset('span_templates_preprocessed_data1/test.jsonl')

        dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
                                collate_fn=my_collate,
                                batch_size=self.hparams.eval_batch_size, shuffle=False)

        return dataloader


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--train-file', type=str, default='data/RAMS_1.0/data/train.jsonlines')
    parser.add_argument('--val-file', type=str, default='data/RAMS_1.0/data/dev.jsonlines')
    parser.add_argument('--test-file', type=str, default='data/RAMS_1.0/data/test.jsonlines')
    parser.add_argument('--train_batch_size', type=int, default=2)
    parser.add_argument('--eval_batch_size', type=int, default=4)
    parser.add_argument('--mark-trigger', action='store_true', default=True)
    args = parser.parse_args()

    print("data_module1.pyaaaaaaaaaaaaaaa")
    dm = RAMSDataModule(args=args)
    dm.prepare_data()

    # training dataloader
    dataloader = dm.train_dataloader()

    for idx, batch in enumerate(dataloader):
        print(batch)
        break

        # val dataloader