Spaces:
Build error
Build error
File size: 6,595 Bytes
6c25ddb 4bb803b 6c25ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import argparse
import logging
import os
import random
import timeit
from datetime import datetime
import torch
#import wandb
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger, TensorBoardLogger
from pytorch_lightning.utilities.seed import seed_everything
from src.genie.data_module4 import RAMSDataModule
from src.genie.ACE_data_module import ACEDataModule
from src.genie.KAIROS_data_module import KAIROSDataModule
from src.genie.model import GenIEModel
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model",
type=str,
required=True,
choices=['gen','constrained-gen']
)
parser.add_argument(
"--dataset",
type=str,
required=True,
choices=['RAMS', 'ACE', 'KAIROS']
)
parser.add_argument('--tmp_dir', type=str)
parser.add_argument(
"--ckpt_name",
default=None,
type=str,
help="The output directory where the model checkpoints and predictions will be written.",
)
parser.add_argument(
"--load_ckpt",
default=None,
type=str,
)
parser.add_argument(
"--train_file",
default=None,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--val_file",
default=None,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
'--test_file',
type=str,
default=None,
)
parser.add_argument('--input_dir', type=str, default=None)
parser.add_argument('--coref_dir', type=str, default='data/kairos/coref_outputs')
parser.add_argument('--use_info', action='store_true', default=False, help='use informative mentions instead of the nearest mention.')
parser.add_argument('--mark_trigger', action='store_true')
parser.add_argument('--sample-gen', action='store_true', help='Do sampling when generation.')
parser.add_argument("--train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--eval_only", action="store_true",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--gradient_clip_val", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--gpus", default=-1, help='-1 means train on all gpus')
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
args = parser.parse_args()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Set seed
seed_everything(args.seed)
logger.info("Training/evaluation parameters %s", args)
if not args.ckpt_name:
d = datetime.now()
time_str = d.strftime('%m-%dT%H%M')
args.ckpt_name = '{}_{}lr{}_{}'.format(args.model, args.train_batch_size * args.accumulate_grad_batches,
args.learning_rate, time_str)
args.ckpt_dir = os.path.join(f'./checkpoints/{args.ckpt_name}')
#os.makedirs(args.ckpt_dir)
checkpoint_callback = ModelCheckpoint(
dirpath=args.ckpt_dir,
save_top_k=2,
monitor='val/loss',
mode='min',
save_weights_only=True,
filename='{epoch}', # this cannot contain slashes
)
lr_logger = LearningRateMonitor()
tb_logger = TensorBoardLogger('logs/')
model = GenIEModel(args)
if args.dataset == 'RAMS':
dm = RAMSDataModule(args)
elif args.dataset == 'ACE':
dm = ACEDataModule(args)
elif args.dataset == 'KAIROS':
dm = KAIROSDataModule(args)
if args.max_steps < 0 :
args.max_epochs = args.min_epochs = args.num_train_epochs
trainer = Trainer(
logger=tb_logger,
min_epochs=args.num_train_epochs,
max_epochs=args.num_train_epochs,
gpus=args.gpus,
checkpoint_callback=checkpoint_callback,
accumulate_grad_batches=args.accumulate_grad_batches,
gradient_clip_val=args.gradient_clip_val,
num_sanity_val_steps=0,
val_check_interval=0.5, # use float to check every n epochs
precision=16 if args.fp16 else 32,
callbacks = [lr_logger, ],
)
if args.load_ckpt:
model.load_state_dict(torch.load(args.load_ckpt,map_location=model.device)['state_dict'])
if args.eval_only:
print(args.eval_only)
dm.setup('test')
trainer.test(model, datamodule=dm) #also loads training dataloader
else:
print(args.eval_only)
dm.setup('fit')
trainer.fit(model, dm)
if __name__ == "__main__":
main()
|