File size: 6,926 Bytes
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os 
import json 
import argparse 
from copy import deepcopy
import spacy 
from spacy import displacy 
import re 
from collections import defaultdict

def find_head(arg_start, arg_end, doc):
    cur_i = arg_start
    while doc[cur_i].head.i >= arg_start and doc[cur_i].head.i <=arg_end:
        if doc[cur_i].head.i == cur_i:
            # self is the head 
            break 
        else:
            cur_i = doc[cur_i].head.i
        
    arg_head = cur_i
    
    return (arg_head, arg_head)

def extract_args_from_template(predicted, template, ontology_dict, evt_type):
    # extract argument text 
    template_words = template.strip().split()
    predicted_words = predicted.strip().split()    
    predicted_args = defaultdict(list) # argname -> List of text 
    t_ptr= 0
    p_ptr= 0 

    while t_ptr < len(template_words) and p_ptr < len(predicted_words):
        if re.match(r'<(arg\d+)>', template_words[t_ptr]):
            m = re.match(r'<(arg\d+)>', template_words[t_ptr])
            arg_num = m.group(1)
            arg_name = ontology_dict[evt_type][arg_num]

            if predicted_words[p_ptr] == '<arg>':
                # missing argument
                p_ptr +=1 
                t_ptr +=1  
            else:
                arg_start = p_ptr 
                while (p_ptr < len(predicted_words)) and (predicted_words[p_ptr] != template_words[t_ptr+1]):
                    p_ptr+=1 
                arg_text = predicted_words[arg_start:p_ptr]
                predicted_args[arg_name].append(arg_text)
                t_ptr+=1 
                # aligned 
        else:
            t_ptr+=1 
            p_ptr+=1 
    
    return dict(predicted_args)

def find_arg_span(arg, context_words, trigger_start, trigger_end, head_only=False, doc=None):
    match = None 
    arg_len = len(arg)
    min_dis = len(context_words) # minimum distance to trigger 
    for i, w in enumerate(context_words):
        if context_words[i:i+arg_len] == arg:
            if i < trigger_start:
                dis = abs(trigger_start-i-arg_len)
            else:
                dis = abs(i-trigger_end)
            if dis< min_dis:
                match = (i, i+arg_len-1)
                min_dis = dis 
    
    if match and head_only:
        assert(doc!=None)
        match = find_head(match[0], match[1], doc)
    return match 

def load_ontology(dataset):
        '''
        Read ontology file for event to argument mapping.
        ''' 
        ontology_dict ={} 
        with open('event_role_{}.json'.format(dataset),'r') as f:
            ontology_dict = json.load(f)

        for evt_name, evt_dict in ontology_dict.items():
            for i, argname in enumerate(evt_dict['roles']):
                evt_dict['arg{}'.format(i+1)] = argname
                # argname -> role is not a one-to-one mapping 
                if argname in evt_dict:
                    evt_dict[argname].append('arg{}'.format(i+1))
                else:
                    evt_dict[argname] = ['arg{}'.format(i+1)]
        
        return ontology_dict

if __name__ == "__main__":
    parser = argparse.ArgumentParser() 
    parser.add_argument('--result-file',type=str, default='checkpoints/gen-KAIROS-pointer-pred/predictions.jsonl')
    parser.add_argument('--test-file', type=str, default='data/kairos/test.jsonl')
    parser.add_argument('--gold', action='store_true')
    args = parser.parse_args() 

    ontology_dict = load_ontology('KAIROS')

    render_dicts = [] 

    reader= open(args.result_file, 'r') 

    with open(args.test_file,'r') as f:
        for line in f:
            doc = json.loads(line)
            # use sent_id for ACE 
            context_words = doc['tokens']
            render_dict = {
                "text":' '.join(context_words),
                "ents": [],
                "title": '{}_gold'.format(doc['doc_id']) if args.gold else doc['doc_id'],

            }
            word2char = {} # word index to start, end char index (end is not inclusive)
            ptr =0  
            for idx, w in enumerate(context_words):
                word2char[idx] = (ptr, ptr+ len(w))
                ptr = word2char[idx][1] +1  
            
            links = [] # (start_word, end_word, label)
            for eidx, e in enumerate(doc['event_mentions']):
                predicted = json.loads(reader.readline())
                filled_template = predicted['predicted']
                evt_type = e['event_type']
                label = 'E{}-{}'.format(eidx, e['event_type']) 
                trigger_start= e['trigger']['start']
                trigger_end = e['trigger']['end'] -1 
                trigger_tup = (trigger_start, trigger_end, label)
                links.append(trigger_tup)
                if args.gold:
                    # use gold arguments 
                    for arg in e['arguments']:
                        label = 'E{}-{}'.format(eidx, arg['role']) 
                        ent_id = arg['entity_id']
                        # get entity span 
                        matched_ent = [entity for entity in doc['entity_mentions'] if entity['id'] == ent_id][0]
                        arg_start = matched_ent['start']
                        arg_end = matched_ent['end'] -1 
                        links.append((arg_start, arg_end, label))
                else: # use predicted arguments 
                    template = ontology_dict[evt_type]['template']
                    # extract argument text 
                    predicted_args = extract_args_from_template(filled_template,template, ontology_dict, evt_type)
                    # get trigger 
                    # extract argument span
                    for argname in predicted_args:
                        for argtext in predicted_args[argname]:
                            arg_span = find_arg_span(argtext, context_words, 
                                trigger_start, trigger_end, head_only=False, doc=None) 
                            if arg_span:# if None means hullucination
                                label = 'E{}-{}'.format(eidx, argname) 
                                links.append((arg_span[0], arg_span[1], label))
                            
            sorted_links = sorted(links, key=lambda x: x[0]) # sort by start idx 
                
            for tup in sorted_links:
                arg_start, arg_end,  arg_name = tup 
                label = arg_name 
                render_dict["ents"].append({
                    "start": word2char[arg_start][0],
                    "end": word2char[arg_end][1],
                    "label": label, 
                })
            render_dicts.append(render_dict)


        

    file_name = args.result_file.split('.')[0]
    if args.gold:
        file_name += '.gold'

    html = displacy.render(render_dicts, style="ent", manual=True, page=True)

    with open('{}.html'.format(file_name), 'w') as f:
        f.write(html)