Spaces:
Build error
Build error
File size: 14,572 Bytes
6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os
import json
import jsonlines
import re
import random
from collections import defaultdict
import argparse
import transformers
from transformers import BartTokenizer
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from .data import IEDataset, my_collate
MAX_LENGTH = 424
MAX_TGT_LENGTH = 72
DOC_STRIDE = 256
print("data_module3.py")
class RAMSDataModule(pl.LightningDataModule):
def __init__(self, args):
super().__init__()
self.hparams = args
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>', ' <tgr>'])
def get_event_type(self, ex):
evt_type = []
for evt in ex['evt_triggers']:
for t in evt[2]:
evt_type.append(t[0])
return evt_type
# 获取标签数据
def create_gold_gen(self, ex, ontology_dict, mark_trigger=True):
'''assumes that each line only contains 1 event.
Input: <s> Template with special <arg> placeholders </s> </s> Passage </s>
Output: <s> Template with arguments and <arg> when no argument is found.
'''
# 设置三个总列表、存放输入模板、输出模板
INPUT = []
OUTPUT = []
CONTEXT = []
# ex 是json数据
# 得到每条数据的事件类型
evt_type = self.get_event_type(ex)[0]
# 将文档中的每个单词取出放入context_words这个新建列表里
context_words = [w for sent in ex['sentences'] for w in sent]
# 从事件本体中取出事件模板 有的事件类型模板做特殊处理
# 新建立的onto_logy_dict中的模板template是一个列表 每次需要取其中一个
template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
# 将占位符 <trg> 用 trigger进行替换
trigger_index = ex['evt_triggers'][0][0]
# trg就是本条json下的触发词
trg = context_words[trigger_index]
i = 0
# 这里需要遍历整个列表 将其中每个模板中的trg进行替换 template是一个列表
for x in range(len(template)):
template[x] = re.sub(r'<trg>', trg, template[x])
i += 1
# 将输入模板中的arg1 arg2等编号论元全部替换为统一的 <arg> 和上面一样需要重新修改
# for x in template:
# x = re.sub(r'<arg\d>', '<arg>', x)
# 转换之后 template变为['what is the <arg> in trg', 'what is the <arg> in trg']
input_template = re.sub(r'<arg\d', '<arg>', template[0])
# 将模板进行分词
space_tokenized_input_template = input_template.split(' ')
# 分词后存储的列表
tokenized_input_template = []
# 将每个单词进行分词后添加到上面这个列表中
for w in space_tokenized_input_template:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
for j in range(i):
INPUT.append(tokenized_input_template)
# input_template 的值应该固定为 what is the <arg> in trg
# 将原数据集中的json取出后, 其中的template列表不应该变化
# 获取三元组 构建输出模板 即标签
for lidx, triple in enumerate(ex['gold_evt_links']):
# 触发词 论元 论元
# 例子: "gold_evt_links":
# [[[40, 40], [33, 33], "evt089arg01victim"],
# [[40, 40], [28, 28], "evt089arg02place"]]
trigger_span, argument_span, arg_name = triple
# 第几个论元
arg_num = ontology_dict[evt_type.replace('n/a', 'unspecified')][arg_name]
# 具体论元内容 短语
arg_text = ' '.join(context_words[argument_span[0]:argument_span[1] + 1])
# 通过正则表达式的方式将模板中的每个<arg> 替换为具体的论元内容
# 按照顺序将列表中的<arg>依次替换为
template[lidx] = re.sub('<{}>'.format(arg_num), arg_text, template[lidx])
trigger = ex['evt_triggers'][0]
if mark_trigger:
trigger_span_start = trigger[0]
trigger_span_end = trigger[1] + 2 # one for inclusion, one for extra start marker
# 触发词之前的单词
prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger[0]]), add_prefix_space=True)
# 触发词短语
tgt = self.tokenizer.tokenize(' '.join(context_words[trigger[0]: trigger[1] + 1]), add_prefix_space=True)
# 触发词之后的单词
suffix = self.tokenizer.tokenize(' '.join(context_words[trigger[1] + 1:]), add_prefix_space=True)
context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
else:
context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
# 将context放入CONTEXT中
for w in range(i):
CONTEXT.append(context)
# 输出模板中的<arg1>等都替换为统一的<arg>
# 构建输出模板 template
# output_template 的构建需要循环输出 此时的template中的内容已经替换为文本中应该抽取的论文短语
# 下面这个循环不是很懂什么意思
# 建立一个output_template
output_template = []
for i in range(len(template)):
output_template.append(re.sub(r'<arg\d>', '<arg>', template[i]))
# 此时的output_template(列表)中的内容存放的是应该生成的template标签模板
# output_template = re.sub(r'<arg\d>', '<arg>', template)
# 使用一个新的space_tokenized_template 来存放分词后的每个template标签模板
space_tokenized_template = []
for i in range(len(output_template)):
space_tokenized_template.append(output_template[i].split())
# space_tokenized_template = output_template.split(' ')
tokenized_template = []
# 此时的space_tokenized_template[[],[],[]]
for i in range(len(space_tokenized_template)):
for w in space_tokenized_template[i]:
tokenized_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
OUTPUT.append(tokenized_input_template)
tokenized_template = []
# for w in space_tokenized_template:
# tokenized_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
return INPUT, OUTPUT, CONTEXT
def load_ontology(self):
# read ontology
# 每个事件类型根据它需要生成的论元数量的不同拆分成相应数量的模板数
# 举个例子 : 一条json数据 事件类型是evt_type 需要生成三个论元arg1 arg2 arg3
# evt_type template1 arg1
# evt_type template2 arg2
# evt_type template3 arg3
# 建立一个字典 每次遍历表格中的行时,针对事件类型的不同 填入字典 在下一次的遍历中如果存在则填入ontology_dict中
ontology_dict = {}
# 设立一个字典进行判断 如果扫描的事件类型已经存在
# evt_type_dict = {}
with open('aida_ontology_fj-5.csv', 'r') as f:
# 其中lidx是索引 line 是每一行的数据
for lidx, line in enumerate(f):
if lidx == 0: # header
continue
fields = line.strip().split(',')
if len(fields) < 2:
break
# 获取事件类型
evt_type = fields[0]
# 如果该事件类型已经存在过
if evt_type in ontology_dict.keys():
# 得到该事件类型下的所有论元类型
args = fields[2:]
# 将该事件类型对应的模板中的论元模板 填充到onto_logy字典中
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
# 事件类型下添加字典一项 arg1的值为arg
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
# 即扫描到的事件类型在 evt_type_dict.keys() 还未存在过
else:
# 建立该事件类型的key
ontology_dict[evt_type] = {}
args = fields[2:]
ontology_dict[evt_type]['template'] = []
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
# 事件类型下添加字典一项 arg1的值为arg
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
return ontology_dict
def prepare_data(self):
#if not os.path.exists('head_templates_preprocessed_data'):
#os.makedirs('head_templates_preprocessed_data')
ontology_dict = self.load_ontology()
#print("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
for split, f in [('train', self.hparams.train_file), ('val', self.hparams.val_file),
('test', self.hparams.test_file)]:
with open(f, 'r') as reader, open('head_templates_preprocessed_data_new/{}.jsonl'.format(split), 'w') as writer:
for lidx, line in enumerate(reader):
# 读取jsonlines中的每一行
ex = json.loads(line.strip())
# 输入模板 应该输出的模板 文本
# 在输入到函数进行处理之后 应该进行一个arg对应一个输入模板、一个输出模板以及一个文本
# 可以选择以列表的形式进行返回
input_template, output_template, context = self.create_gold_gen(ex, ontology_dict,
self.hparams.mark_trigger)
# 返回所有的编码信息
# 返回的是三个列表 INPUT OUTPUT CONTEXT 这三个列表的长度相等 举个例子 列表长度为3
length = len(input_template)
for i in range(length):
input_tokens = self.tokenizer.encode_plus(input_template[i], context[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
# target_tokens
tgt_tokens = self.tokenizer.encode_plus(output_template[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_TGT_LENGTH,
truncation=True,
padding='max_length')
# input_ids 单词在词典中的编码
# tgt_tokens 指定对哪些词进行self_attention操作
processed_ex = {
# 'idx': lidx,
'doc_key': ex['doc_key'],
'input_token_ids': input_tokens['input_ids'],
'input_attn_mask': input_tokens['attention_mask'],
'tgt_token_ids': tgt_tokens['input_ids'],
'tgt_attn_mask': tgt_tokens['attention_mask'],
}
#print(processed_ex)
writer.write(json.dumps(processed_ex) + "\n")
def train_dataloader(self):
dataset = IEDataset('head_templates_preprocessed_data_new/train.jsonl')
dataloader = DataLoader(dataset,
pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.train_batch_size,
shuffle=True)
return dataloader
def val_dataloader(self):
dataset = IEDataset('head_templates_preprocessed_data_new/val.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
def test_dataloader(self):
dataset = IEDataset('head_templates_preprocessed_data_new/test.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file', type=str, default='data/RAMS_1.0/data/train.jsonlines')
parser.add_argument('--val-file', type=str, default='data/RAMS_1.0/data/dev.jsonlines')
parser.add_argument('--test-file', type=str, default='data/RAMS_1.0/data/test.jsonlines')
parser.add_argument('--train_batch_size', type=int, default=2)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--mark-trigger', action='store_true', default=True)
args = parser.parse_args()
print("data_module1.pyaaaaaaaaaaaaaaa")
dm = RAMSDataModule(args=args)
dm.prepare_data()
# training dataloader
dataloader = dm.train_dataloader()
for idx, batch in enumerate(dataloader):
print(batch)
break
# val dataloader
|