Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,788 Bytes
3d5837a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
import torch
from torch import Tensor
import comfy.utils
import comfy.model_patcher
import comfy.model_management
from nodes import ImageScale
from comfy.model_base import BaseModel
from comfy.model_patcher import ModelPatcher
from comfy.controlnet import ControlNet, T2IAdapter
from typing import List, Union, Tuple, Dict
from weakref import WeakSet
opt_C = 4
opt_f = 8
def ceildiv(big, small):
# Correct ceiling division that avoids floating-point errors and importing math.ceil.
return -(big // -small)
from enum import Enum
class BlendMode(Enum): # i.e. LayerType
FOREGROUND = 'Foreground'
BACKGROUND = 'Background'
class Processing: ...
class Device: ...
devices = Device()
devices.device = comfy.model_management.get_torch_device()
def null_decorator(fn):
def wrapper(*args, **kwargs):
return fn(*args, **kwargs)
return wrapper
keep_signature = null_decorator
controlnet = null_decorator
stablesr = null_decorator
grid_bbox = null_decorator
custom_bbox = null_decorator
noise_inverse = null_decorator
class BBox:
''' grid bbox '''
def __init__(self, x:int, y:int, w:int, h:int):
self.x = x
self.y = y
self.w = w
self.h = h
self.box = [x, y, x+w, y+h]
self.slicer = slice(None), slice(None), slice(y, y+h), slice(x, x+w)
def __getitem__(self, idx:int) -> int:
return self.box[idx]
def split_bboxes(w:int, h:int, tile_w:int, tile_h:int, overlap:int=16, init_weight:Union[Tensor, float]=1.0) -> Tuple[List[BBox], Tensor]:
cols = ceildiv((w - overlap) , (tile_w - overlap))
rows = ceildiv((h - overlap) , (tile_h - overlap))
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
bbox_list: List[BBox] = []
weight = torch.zeros((1, 1, h, w), device=devices.device, dtype=torch.float32)
for row in range(rows):
y = min(int(row * dy), h - tile_h)
for col in range(cols):
x = min(int(col * dx), w - tile_w)
bbox = BBox(x, y, tile_w, tile_h)
bbox_list.append(bbox)
weight[bbox.slicer] += init_weight
return bbox_list, weight
class CustomBBox(BBox):
''' region control bbox '''
pass
class AbstractDiffusion:
def __init__(self):
self.method = self.__class__.__name__
self.pbar = None
self.w: int = 0
self.h: int = 0
self.tile_width: int = None
self.tile_height: int = None
self.tile_overlap: int = None
self.tile_batch_size: int = None
# cache. final result of current sampling step, [B, C=4, H//8, W//8]
# avoiding overhead of creating new tensors and weight summing
self.x_buffer: Tensor = None
# self.w: int = int(self.p.width // opt_f) # latent size
# self.h: int = int(self.p.height // opt_f)
# weights for background & grid bboxes
self._weights: Tensor = None
# self.weights: Tensor = torch.zeros((1, 1, self.h, self.w), device=devices.device, dtype=torch.float32)
self._init_grid_bbox = None
self._init_done = None
# count the step correctly
self.step_count = 0
self.inner_loop_count = 0
self.kdiff_step = -1
# ext. Grid tiling painting (grid bbox)
self.enable_grid_bbox: bool = False
self.tile_w: int = None
self.tile_h: int = None
self.tile_bs: int = None
self.num_tiles: int = None
self.num_batches: int = None
self.batched_bboxes: List[List[BBox]] = []
# ext. Region Prompt Control (custom bbox)
self.enable_custom_bbox: bool = False
self.custom_bboxes: List[CustomBBox] = []
# self.cond_basis: Cond = None
# self.uncond_basis: Uncond = None
# self.draw_background: bool = True # by default we draw major prompts in grid tiles
# self.causal_layers: bool = None
# ext. ControlNet
self.enable_controlnet: bool = False
# self.controlnet_script: ModuleType = None
self.control_tensor_batch_dict = {}
self.control_tensor_batch: List[List[Tensor]] = [[]]
# self.control_params: Dict[str, Tensor] = None # {}
self.control_params: Dict[Tuple, List[List[Tensor]]] = {}
self.control_tensor_cpu: bool = None
self.control_tensor_custom: List[List[Tensor]] = []
self.draw_background: bool = True # by default we draw major prompts in grid tiles
self.control_tensor_cpu = False
self.weights = None
self.imagescale = ImageScale()
def reset(self):
tile_width = self.tile_width
tile_height = self.tile_height
tile_overlap = self.tile_overlap
tile_batch_size = self.tile_batch_size
self.__init__()
self.tile_width = tile_width
self.tile_height = tile_height
self.tile_overlap = tile_overlap
self.tile_batch_size = tile_batch_size
def repeat_tensor(self, x:Tensor, n:int, concat=False, concat_to=0) -> Tensor:
''' repeat the tensor on it's first dim '''
if n == 1: return x
B = x.shape[0]
r_dims = len(x.shape) - 1
if B == 1: # batch_size = 1 (not `tile_batch_size`)
shape = [n] + [-1] * r_dims # [N, -1, ...]
return x.expand(shape) # `expand` is much lighter than `tile`
else:
if concat:
return torch.cat([x for _ in range(n)], dim=0)[:concat_to]
shape = [n] + [1] * r_dims # [N, 1, ...]
return x.repeat(shape)
def update_pbar(self):
if self.pbar.n >= self.pbar.total:
self.pbar.close()
else:
# self.pbar.update()
sampling_step = 20
if self.step_count == sampling_step:
self.inner_loop_count += 1
if self.inner_loop_count < self.total_bboxes:
self.pbar.update()
else:
self.step_count = sampling_step
self.inner_loop_count = 0
def reset_buffer(self, x_in:Tensor):
# Judge if the shape of x_in is the same as the shape of x_buffer
if self.x_buffer is None or self.x_buffer.shape != x_in.shape:
self.x_buffer = torch.zeros_like(x_in, device=x_in.device, dtype=x_in.dtype)
else:
self.x_buffer.zero_()
@grid_bbox
def init_grid_bbox(self, tile_w:int, tile_h:int, overlap:int, tile_bs:int):
# if self._init_grid_bbox is not None: return
# self._init_grid_bbox = True
self.weights = torch.zeros((1, 1, self.h, self.w), device=devices.device, dtype=torch.float32)
self.enable_grid_bbox = True
self.tile_w = min(tile_w, self.w)
self.tile_h = min(tile_h, self.h)
overlap = max(0, min(overlap, min(tile_w, tile_h) - 4))
# split the latent into overlapped tiles, then batching
# weights basically indicate how many times a pixel is painted
bboxes, weights = split_bboxes(self.w, self.h, self.tile_w, self.tile_h, overlap, self.get_tile_weights())
self.weights += weights
self.num_tiles = len(bboxes)
self.num_batches = ceildiv(self.num_tiles , tile_bs)
self.tile_bs = ceildiv(len(bboxes) , self.num_batches) # optimal_batch_size
self.batched_bboxes = [bboxes[i*self.tile_bs:(i+1)*self.tile_bs] for i in range(self.num_batches)]
@grid_bbox
def get_tile_weights(self) -> Union[Tensor, float]:
return 1.0
@noise_inverse
def init_noise_inverse(self, steps:int, retouch:float, get_cache_callback, set_cache_callback, renoise_strength:float, renoise_kernel:int):
self.noise_inverse_enabled = True
self.noise_inverse_steps = steps
self.noise_inverse_retouch = float(retouch)
self.noise_inverse_renoise_strength = float(renoise_strength)
self.noise_inverse_renoise_kernel = int(renoise_kernel)
self.noise_inverse_set_cache = set_cache_callback
self.noise_inverse_get_cache = get_cache_callback
def init_done(self):
'''
Call this after all `init_*`, settings are done, now perform:
- settings sanity check
- pre-computations, cache init
- anything thing needed before denoising starts
'''
# if self._init_done is not None: return
# self._init_done = True
self.total_bboxes = 0
if self.enable_grid_bbox: self.total_bboxes += self.num_batches
if self.enable_custom_bbox: self.total_bboxes += len(self.custom_bboxes)
assert self.total_bboxes > 0, "Nothing to paint! No background to draw and no custom bboxes were provided."
# sampling_steps = _steps
# self.pbar = tqdm(total=(self.total_bboxes) * sampling_steps, desc=f"{self.method} Sampling: ")
@controlnet
def prepare_controlnet_tensors(self, refresh:bool=False, tensor=None):
''' Crop the control tensor into tiles and cache them '''
if not refresh:
if self.control_tensor_batch is not None or self.control_params is not None: return
tensors = [tensor]
self.org_control_tensor_batch = tensors
self.control_tensor_batch = []
for i in range(len(tensors)):
control_tile_list = []
control_tensor = tensors[i]
for bboxes in self.batched_bboxes:
single_batch_tensors = []
for bbox in bboxes:
if len(control_tensor.shape) == 3:
control_tensor.unsqueeze_(0)
control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f]
single_batch_tensors.append(control_tile)
control_tile = torch.cat(single_batch_tensors, dim=0)
if self.control_tensor_cpu:
control_tile = control_tile.cpu()
control_tile_list.append(control_tile)
self.control_tensor_batch.append(control_tile_list)
if len(self.custom_bboxes) > 0:
custom_control_tile_list = []
for bbox in self.custom_bboxes:
if len(control_tensor.shape) == 3:
control_tensor.unsqueeze_(0)
control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f]
if self.control_tensor_cpu:
control_tile = control_tile.cpu()
custom_control_tile_list.append(control_tile)
self.control_tensor_custom.append(custom_control_tile_list)
@controlnet
def switch_controlnet_tensors(self, batch_id:int, x_batch_size:int, tile_batch_size:int, is_denoise=False):
# if not self.enable_controlnet: return
if self.control_tensor_batch is None: return
# self.control_params = [0]
# for param_id in range(len(self.control_params)):
for param_id in range(len(self.control_tensor_batch)):
# tensor that was concatenated in `prepare_controlnet_tensors`
control_tile = self.control_tensor_batch[param_id][batch_id]
# broadcast to latent batch size
if x_batch_size > 1: # self.is_kdiff:
all_control_tile = []
for i in range(tile_batch_size):
this_control_tile = [control_tile[i].unsqueeze(0)] * x_batch_size
all_control_tile.append(torch.cat(this_control_tile, dim=0))
control_tile = torch.cat(all_control_tile, dim=0) # [:x_tile.shape[0]]
self.control_tensor_batch[param_id][batch_id] = control_tile
# else:
# control_tile = control_tile.repeat([x_batch_size if is_denoise else x_batch_size * 2, 1, 1, 1])
# self.control_params[param_id].hint_cond = control_tile.to(devices.device)
def process_controlnet(self, x_shape, x_dtype, c_in: dict, cond_or_uncond: List, bboxes, batch_size: int, batch_id: int):
control: ControlNet = c_in['control']
param_id = -1 # current controlnet & previous_controlnets
tuple_key = tuple(cond_or_uncond) + tuple(x_shape)
while control is not None:
param_id += 1
PH, PW = self.h*8, self.w*8
if tuple_key not in self.control_params:
self.control_params[tuple_key] = [[None]]
while len(self.control_params[tuple_key]) <= param_id:
self.control_params[tuple_key].append([None])
while len(self.control_params[tuple_key][param_id]) <= batch_id:
self.control_params[tuple_key][param_id].append(None)
# Below is taken from comfy.controlnet.py, but we need to additionally tile the cnets.
# if statement: eager eval. first time when cond_hint is None.
if self.refresh or control.cond_hint is None or not isinstance(self.control_params[tuple_key][param_id][batch_id], Tensor):
dtype = getattr(control, 'manual_cast_dtype', None)
if dtype is None: dtype = getattr(getattr(control, 'control_model', None), 'dtype', None)
if dtype is None: dtype = x_dtype
if isinstance(control, T2IAdapter):
width, height = control.scale_image_to(PW, PH)
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, width, height, 'nearest-exact', "center").float().to(control.device)
if control.channels_in == 1 and control.cond_hint.shape[1] > 1:
control.cond_hint = torch.mean(control.cond_hint, 1, keepdim=True)
elif control.__class__.__name__ == 'ControlLLLiteAdvanced':
if control.sub_idxs is not None and control.cond_hint_original.shape[0] >= control.full_latent_length:
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original[control.sub_idxs], PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device)
else:
if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]):
control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device)
else:
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device)
else:
if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]):
control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device)
else:
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', 'center').to(dtype=dtype, device=control.device)
# Broadcast then tile
#
# Below can be in the parent's if clause because self.refresh will trigger on resolution change, e.g. cause of ConditioningSetArea
# so that particular case isn't cached atm.
cond_hint_pre_tile = control.cond_hint
if control.cond_hint.shape[0] < batch_size :
cond_hint_pre_tile = self.repeat_tensor(control.cond_hint, ceildiv(batch_size, control.cond_hint.shape[0]))[:batch_size]
cns = [cond_hint_pre_tile[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] for bbox in bboxes]
control.cond_hint = torch.cat(cns, dim=0)
self.control_params[tuple_key][param_id][batch_id]=control.cond_hint
else:
control.cond_hint = self.control_params[tuple_key][param_id][batch_id]
control = control.previous_controlnet
import numpy as np
from numpy import pi, exp, sqrt
def gaussian_weights(tile_w:int, tile_h:int) -> Tensor:
'''
Copy from the original implementation of Mixture of Diffusers
https://github.com/albarji/mixture-of-diffusers/blob/master/mixdiff/tiling.py
This generates gaussian weights to smooth the noise of each tile.
This is critical for this method to work.
'''
f = lambda x, midpoint, var=0.01: exp(-(x-midpoint)*(x-midpoint) / (tile_w*tile_w) / (2*var)) / sqrt(2*pi*var)
x_probs = [f(x, (tile_w - 1) / 2) for x in range(tile_w)] # -1 because index goes from 0 to latent_width - 1
y_probs = [f(y, tile_h / 2) for y in range(tile_h)]
w = np.outer(y_probs, x_probs)
return torch.from_numpy(w).to(devices.device, dtype=torch.float32)
class CondDict: ...
class MultiDiffusion(AbstractDiffusion):
@torch.inference_mode()
def __call__(self, model_function: BaseModel.apply_model, args: dict):
x_in: Tensor = args["input"]
t_in: Tensor = args["timestep"]
c_in: dict = args["c"]
cond_or_uncond: List = args["cond_or_uncond"]
c_crossattn: Tensor = c_in['c_crossattn']
N, C, H, W = x_in.shape
# comfyui can feed in a latent that's a different size cause of SetArea, so we'll refresh in that case.
self.refresh = False
if self.weights is None or self.h != H or self.w != W:
self.h, self.w = H, W
self.refresh = True
self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size)
# init everything done, perform sanity check & pre-computations
self.init_done()
self.h, self.w = H, W
# clear buffer canvas
self.reset_buffer(x_in)
# Background sampling (grid bbox)
if self.draw_background:
for batch_id, bboxes in enumerate(self.batched_bboxes):
if comfy.model_management.processing_interrupted():
# self.pbar.close()
return x_in
# batching & compute tiles
x_tile = torch.cat([x_in[bbox.slicer] for bbox in bboxes], dim=0) # [TB, C, TH, TW]
n_rep = len(bboxes)
ts_tile = self.repeat_tensor(t_in, n_rep)
cond_tile = self.repeat_tensor(c_crossattn, n_rep)
c_tile = c_in.copy()
c_tile['c_crossattn'] = cond_tile
if 'time_context' in c_in:
c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep)
for key in c_tile:
if key in ['y', 'c_concat']:
icond = c_tile[key]
if icond.shape[2:] == (self.h, self.w):
c_tile[key] = torch.cat([icond[bbox.slicer] for bbox in bboxes])
else:
c_tile[key] = self.repeat_tensor(icond, n_rep)
# controlnet tiling
# self.switch_controlnet_tensors(batch_id, N, len(bboxes))
if 'control' in c_in:
control=c_in['control']
self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id)
c_tile['control'] = control.get_control_orig(x_tile, ts_tile, c_tile, len(cond_or_uncond))
# stablesr tiling
# self.switch_stablesr_tensors(batch_id)
x_tile_out = model_function(x_tile, ts_tile, **c_tile)
for i, bbox in enumerate(bboxes):
self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :]
del x_tile_out, x_tile, ts_tile, c_tile
# update progress bar
# self.update_pbar()
# Averaging background buffer
x_out = torch.where(self.weights > 1, self.x_buffer / self.weights, self.x_buffer)
return x_out
class MixtureOfDiffusers(AbstractDiffusion):
"""
Mixture-of-Diffusers Implementation
https://github.com/albarji/mixture-of-diffusers
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# weights for custom bboxes
self.custom_weights: List[Tensor] = []
self.get_weight = gaussian_weights
def init_done(self):
super().init_done()
# The original gaussian weights can be extremely small, so we rescale them for numerical stability
self.rescale_factor = 1 / self.weights
# Meanwhile, we rescale the custom weights in advance to save time of slicing
for bbox_id, bbox in enumerate(self.custom_bboxes):
if bbox.blend_mode == BlendMode.BACKGROUND:
self.custom_weights[bbox_id] *= self.rescale_factor[bbox.slicer]
@grid_bbox
def get_tile_weights(self) -> Tensor:
# weights for grid bboxes
# if not hasattr(self, 'tile_weights'):
# x_in can change sizes cause of ConditioningSetArea, so we have to recalcualte each time
self.tile_weights = self.get_weight(self.tile_w, self.tile_h)
return self.tile_weights
@torch.inference_mode()
def __call__(self, model_function: BaseModel.apply_model, args: dict):
x_in: Tensor = args["input"]
t_in: Tensor = args["timestep"]
c_in: dict = args["c"]
cond_or_uncond: List= args["cond_or_uncond"]
c_crossattn: Tensor = c_in['c_crossattn']
N, C, H, W = x_in.shape
self.refresh = False
# self.refresh = True
if self.weights is None or self.h != H or self.w != W:
self.h, self.w = H, W
self.refresh = True
self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size)
# init everything done, perform sanity check & pre-computations
self.init_done()
self.h, self.w = H, W
# clear buffer canvas
self.reset_buffer(x_in)
# self.pbar = tqdm(total=(self.total_bboxes) * sampling_steps, desc=f"{self.method} Sampling: ")
# self.pbar = tqdm(total=len(self.batched_bboxes), desc=f"{self.method} Sampling: ")
# Global sampling
if self.draw_background:
for batch_id, bboxes in enumerate(self.batched_bboxes): # batch_id is the `Latent tile batch size`
if comfy.model_management.processing_interrupted():
# self.pbar.close()
return x_in
# batching
x_tile_list = []
t_tile_list = []
icond_map = {}
# tcond_tile_list = []
# icond_tile_list = []
# vcond_tile_list = []
# control_list = []
for bbox in bboxes:
x_tile_list.append(x_in[bbox.slicer])
t_tile_list.append(t_in)
if isinstance(c_in, dict):
# tcond
# tcond_tile = c_crossattn #self.get_tcond(c_in) # cond, [1, 77, 768]
# tcond_tile_list.append(tcond_tile)
# present in sdxl
for key in ['y', 'c_concat']:
if key in c_in:
icond=c_in[key] # self.get_icond(c_in)
if icond.shape[2:] == (self.h, self.w):
icond = icond[bbox.slicer]
if icond_map.get(key, None) is None:
icond_map[key] = []
icond_map[key].append(icond)
# # vcond:
# vcond = self.get_vcond(c_in)
# vcond_tile_list.append(vcond)
else:
print('>> [WARN] not supported, make an issue on github!!')
n_rep = len(bboxes)
x_tile = torch.cat(x_tile_list, dim=0) # differs each
t_tile = self.repeat_tensor(t_in, n_rep) # just repeat
tcond_tile = self.repeat_tensor(c_crossattn, n_rep) # just repeat
c_tile = c_in.copy()
c_tile['c_crossattn'] = tcond_tile
if 'time_context' in c_in:
c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep) # just repeat
for key in c_tile:
if key in ['y', 'c_concat']:
icond_tile = torch.cat(icond_map[key], dim=0) # differs each
c_tile[key] = icond_tile
# vcond_tile = torch.cat(vcond_tile_list, dim=0) if None not in vcond_tile_list else None # just repeat
# controlnet
# self.switch_controlnet_tensors(batch_id, N, len(bboxes), is_denoise=True)
if 'control' in c_in:
control=c_in['control']
self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id)
c_tile['control'] = control.get_control_orig(x_tile, t_tile, c_tile, len(cond_or_uncond))
# stablesr
# self.switch_stablesr_tensors(batch_id)
# denoising: here the x is the noise
x_tile_out = model_function(x_tile, t_tile, **c_tile)
# de-batching
for i, bbox in enumerate(bboxes):
# These weights can be calcluated in advance, but will cost a lot of vram
# when you have many tiles. So we calculate it here.
w = self.tile_weights * self.rescale_factor[bbox.slicer]
self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :] * w
del x_tile_out, x_tile, t_tile, c_tile
# self.update_pbar()
# self.pbar.update()
# self.pbar.close()
x_out = self.x_buffer
return x_out
MAX_RESOLUTION=8192
class TiledDiffusion():
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"method": (["MultiDiffusion", "Mixture of Diffusers"], {"default": "Mixture of Diffusers"}),
# "tile_width": ("INT", {"default": 96, "min": 16, "max": 256, "step": 16}),
"tile_width": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
# "tile_height": ("INT", {"default": 96, "min": 16, "max": 256, "step": 16}),
"tile_height": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"tile_overlap": ("INT", {"default": 8*opt_f, "min": 0, "max": 256*opt_f, "step": 4*opt_f}),
"tile_batch_size": ("INT", {"default": 4, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply"
CATEGORY = "_for_testing"
instances = WeakSet()
@classmethod
def IS_CHANGED(s, *args, **kwargs):
for o in s.instances:
o.impl.reset()
return ""
def __init__(self) -> None:
self.__class__.instances.add(self)
def apply(self, model: ModelPatcher, method, tile_width, tile_height, tile_overlap, tile_batch_size):
if method == "Mixture of Diffusers":
self.impl = MixtureOfDiffusers()
else:
self.impl = MultiDiffusion()
# if noise_inversion:
# get_cache_callback = self.noise_inverse_get_cache
# set_cache_callback = None # lambda x0, xt, prompts: self.noise_inverse_set_cache(p, x0, xt, prompts, steps, retouch)
# self.impl.init_noise_inverse(steps, retouch, get_cache_callback, set_cache_callback, renoise_strength, renoise_kernel_size)
self.impl.tile_width = tile_width // opt_f
self.impl.tile_height = tile_height // opt_f
self.impl.tile_overlap = tile_overlap // opt_f
self.impl.tile_batch_size = tile_batch_size
# self.impl.init_grid_bbox(tile_width, tile_height, tile_overlap, tile_batch_size)
# # init everything done, perform sanity check & pre-computations
# self.impl.init_done()
# hijack the behaviours
# self.impl.hook()
model = model.clone()
model.set_model_unet_function_wrapper(self.impl)
model.model_options['tiled_diffusion'] = True
return (model,)
class NoiseInversion():
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"image": ("IMAGE", ),
"steps": ("INT", {"default": 10, "min": 1, "max": 208, "step": 1}),
"retouch": ("FLOAT", {"default": 1, "min": 1, "max": 100, "step": 0.1}),
"renoise_strength": ("FLOAT", {"default": 1, "min": 1, "max": 2, "step": 0.01}),
"renoise_kernel_size": ("INT", {"default": 2, "min": 2, "max": 512, "step": 1}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
def sample(self, model: ModelPatcher, positive, negative,
latent_image, image, steps, retouch, renoise_strength, renoise_kernel_size):
return (latent_image,)
NODE_CLASS_MAPPINGS = {
"TiledDiffusion": TiledDiffusion,
# "NoiseInversion": NoiseInversion,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"TiledDiffusion": "Tiled Diffusion",
# "NoiseInversion": "Noise Inversion",
}
|