File size: 5,395 Bytes
932ae62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import comfy.model_management
import comfy.sampler_helpers
import comfy.samplers
import comfy.utils
import node_helpers

def perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale):
    pos = noise_pred_pos - noise_pred_nocond
    neg = noise_pred_neg - noise_pred_nocond

    perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos
    perp_neg = perp * neg_scale
    cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
    return cfg_result

#TODO: This node should be removed, it has been replaced with PerpNegGuider
class PerpNeg:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"model": ("MODEL", ),
                             "empty_conditioning": ("CONDITIONING", ),
                             "neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
                            }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, empty_conditioning, neg_scale):
        m = model.clone()
        nocond = comfy.sampler_helpers.convert_cond(empty_conditioning)

        def cfg_function(args):
            model = args["model"]
            noise_pred_pos = args["cond_denoised"]
            noise_pred_neg = args["uncond_denoised"]
            cond_scale = args["cond_scale"]
            x = args["input"]
            sigma = args["sigma"]
            model_options = args["model_options"]
            nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative")

            (noise_pred_nocond,) = comfy.samplers.calc_cond_batch(model, [nocond_processed], x, sigma, model_options)

            cfg_result = x - perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale)
            return cfg_result

        m.set_model_sampler_cfg_function(cfg_function)

        return (m, )


class Guider_PerpNeg(comfy.samplers.CFGGuider):
    def set_conds(self, positive, negative, empty_negative_prompt):
        empty_negative_prompt = node_helpers.conditioning_set_values(empty_negative_prompt, {"prompt_type": "negative"})
        self.inner_set_conds({"positive": positive, "empty_negative_prompt": empty_negative_prompt, "negative": negative})

    def set_cfg(self, cfg, neg_scale):
        self.cfg = cfg
        self.neg_scale = neg_scale

    def predict_noise(self, x, timestep, model_options={}, seed=None):
        # in CFGGuider.predict_noise, we call sampling_function(), which uses cfg_function() to compute pos & neg
        # but we'd rather do a single batch of sampling pos, neg, and empty, so we call calc_cond_batch([pos,neg,empty]) directly
        
        positive_cond = self.conds.get("positive", None)
        negative_cond = self.conds.get("negative", None)
        empty_cond = self.conds.get("empty_negative_prompt", None)

        (noise_pred_pos, noise_pred_neg, noise_pred_empty) = \
            comfy.samplers.calc_cond_batch(self.inner_model, [positive_cond, negative_cond, empty_cond], x, timestep, model_options)
        cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg)

        # normally this would be done in cfg_function, but we skipped 
        # that for efficiency: we can compute the noise predictions in
        # a single call to calc_cond_batch() (rather than two)
        # so we replicate the hook here
        for fn in model_options.get("sampler_post_cfg_function", []):
            args = {
                "denoised": cfg_result,
                "cond": positive_cond,
                "uncond": negative_cond,
                "model": self.inner_model,
                "uncond_denoised": noise_pred_neg,
                "cond_denoised": noise_pred_pos,
                "sigma": timestep,
                "model_options": model_options,
                "input": x,
                # not in the original call in samplers.py:cfg_function, but made available for future hooks
                "empty_cond": empty_cond,
                "empty_cond_denoised": noise_pred_empty,}
            cfg_result = fn(args)

        return cfg_result

class PerpNegGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "empty_conditioning": ("CONDITIONING", ),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                    "neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "_for_testing"

    def get_guider(self, model, positive, negative, empty_conditioning, cfg, neg_scale):
        guider = Guider_PerpNeg(model)
        guider.set_conds(positive, negative, empty_conditioning)
        guider.set_cfg(cfg, neg_scale)
        return (guider,)

NODE_CLASS_MAPPINGS = {
    "PerpNeg": PerpNeg,
    "PerpNegGuider": PerpNegGuider,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "PerpNeg": "Perp-Neg (DEPRECATED by PerpNegGuider)",
}