File size: 51,010 Bytes
1076673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ALBERT model. """

import logging
import math
import os

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from datetime import datetime

from transformers.models.albert.configuration_albert import AlbertConfig
from transformers.models.bert.modeling_bert import ACT2FN,BertEmbeddings, BertSelfAttention, prune_linear_layer
# from transformers.configuration_albert import AlbertConfig
# from transformers.modeling_bert import ACT2FN, BertEmbeddings, BertSelfAttention, prune_linear_layer
from transformers.modeling_utils import PreTrainedModel

from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward


logger = logging.getLogger(__name__)


ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    "albert-base-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-pytorch_model.bin",
    "albert-large-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-pytorch_model.bin",
    "albert-xlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-pytorch_model.bin",
    "albert-xxlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-pytorch_model.bin",
    "albert-base-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-pytorch_model.bin",
    "albert-large-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-pytorch_model.bin",
    "albert-xlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-pytorch_model.bin",
    "albert-xxlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-pytorch_model.bin",
}

# load pretrained weights from tensorflow
def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model."""
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF mode·l
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        print(name)

    for name, array in zip(names, arrays):
        original_name = name

        # If saved from the TF HUB module
        name = name.replace("module/", "")

        # Renaming and simplifying
        name = name.replace("ffn_1", "ffn")
        name = name.replace("bert/", "albert/")
        name = name.replace("attention_1", "attention")
        name = name.replace("transform/", "")
        name = name.replace("LayerNorm_1", "full_layer_layer_norm")
        name = name.replace("LayerNorm", "attention/LayerNorm")
        name = name.replace("transformer/", "")

        # The feed forward layer had an 'intermediate' step which has been abstracted away
        name = name.replace("intermediate/dense/", "")
        name = name.replace("ffn/intermediate/output/dense/", "ffn_output/")

        # ALBERT attention was split between self and output which have been abstracted away
        name = name.replace("/output/", "/")
        name = name.replace("/self/", "/")

        # The pooler is a linear layer
        name = name.replace("pooler/dense", "pooler")

        # The classifier was simplified to predictions from cls/predictions
        name = name.replace("cls/predictions", "predictions")
        name = name.replace("predictions/attention", "predictions")

        # Naming was changed to be more explicit
        name = name.replace("embeddings/attention", "embeddings")
        name = name.replace("inner_group_", "albert_layers/")
        name = name.replace("group_", "albert_layer_groups/")

        # Classifier
        if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name):
            name = "classifier/" + name

        # No ALBERT model currently handles the next sentence prediction task
        if "seq_relationship" in name:
            continue

        name = name.split("/")

        # Ignore the gradients applied by the LAMB/ADAM optimizers.
        if (
            "adam_m" in name
            or "adam_v" in name
            or "AdamWeightDecayOptimizer" in name
            or "AdamWeightDecayOptimizer_1" in name
            or "global_step" in name
        ):
            logger.info("Skipping {}".format("/".join(name)))
            continue

        pointer = model
        for m_name in name:
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                scope_names = re.split(r"_(\d+)", m_name)
            else:
                scope_names = [m_name]

            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "squad":
                pointer = getattr(pointer, "classifier")
            else:
                try:
                    pointer = getattr(pointer, scope_names[0])
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
            if len(scope_names) >= 2:
                num = int(scope_names[1])
                pointer = pointer[num]

        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {} from {}".format(name, original_name))
        pointer.data = torch.from_numpy(array)

    return model


class AlbertEmbeddings(BertEmbeddings):
    """
    Construct the embeddings from word, position and token_type embeddings.
    """

    def __init__(self, config):
        super().__init__(config)

        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
        self.LayerNorm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)


class AlbertAttention(BertSelfAttention):
    def __init__(self, config):
        super().__init__(config)

        self.output_attentions = config.output_attentions
        self.num_attention_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        self.attention_head_size = config.hidden_size // config.num_attention_heads
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.num_attention_heads, self.attention_head_size)
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
        for head in heads:
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()

        # Prune linear layers
        self.query = prune_linear_layer(self.query, index)
        self.key = prune_linear_layer(self.key, index)
        self.value = prune_linear_layer(self.value, index)
        self.dense = prune_linear_layer(self.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.num_attention_heads = self.num_attention_heads - len(heads)
        self.all_head_size = self.attention_head_size * self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, input_ids, attention_mask=None, head_mask=None):
        mixed_query_layer = self.query(input_ids)
        mixed_key_layer = self.key(input_ids)
        mixed_value_layer = self.value(input_ids)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()

        # Should find a better way to do this
        w = (
            self.dense.weight.t()
            .view(self.num_attention_heads, self.attention_head_size, self.hidden_size)
            .to(context_layer.dtype)
        )
        b = self.dense.bias.to(context_layer.dtype)

        projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
        projected_context_layer_dropout = self.dropout(projected_context_layer)
        layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer_dropout)
        return (layernormed_context_layer, attention_probs) if self.output_attentions else (layernormed_context_layer,)


class AlbertLayer(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config
        self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attention = AlbertAttention(config)
        self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
        self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
        self.activation = ACT2FN[config.hidden_act]

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        attention_output = self.attention(hidden_states, attention_mask, head_mask)
        ffn_output = self.ffn(attention_output[0])
        ffn_output = self.activation(ffn_output)
        ffn_output = self.ffn_output(ffn_output)
        hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])

        return (hidden_states,) + attention_output[1:]  # add attentions if we output them


class AlbertLayerGroup(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        layer_hidden_states = ()
        layer_attentions = ()

        for layer_index, albert_layer in enumerate(self.albert_layers):
            layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index])
            hidden_states = layer_output[0]

            if self.output_attentions:
                layer_attentions = layer_attentions + (layer_output[1],)

            if self.output_hidden_states:
                layer_hidden_states = layer_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (layer_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (layer_attentions,)
        return outputs  # last-layer hidden state, (layer hidden states), (layer attentions)


class AlbertTransformer(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
        self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        hidden_states = self.embedding_hidden_mapping_in(hidden_states)

        all_attentions = ()

        if self.output_hidden_states:
            all_hidden_states = (hidden_states,)

        for i in range(self.config.num_hidden_layers):
            # Number of layers in a hidden group
            layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)

            # Index of the hidden group
            group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))

            layer_group_output = self.albert_layer_groups[group_idx](
                hidden_states,
                attention_mask,
                head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
            )
            hidden_states = layer_group_output[0]

            if self.output_attentions:
                all_attentions = all_attentions + layer_group_output[-1]

            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)

    def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None):
        if current_layer == 0:
            hidden_states = self.embedding_hidden_mapping_in(hidden_states)
        else:
            hidden_states = hidden_states[0]

        layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)

        # Index of the hidden group
        group_idx = int(current_layer / (self.config.num_hidden_layers / self.config.num_hidden_groups))

        # Index of the layer inside the group
        layer_idx = int(current_layer - group_idx * layers_per_group)

        layer_group_output = self.albert_layer_groups[group_idx](hidden_states, attention_mask, head_mask[group_idx * layers_per_group:(group_idx + 1) * layers_per_group])
        hidden_states = layer_group_output[0]

        return (hidden_states,)

class AlbertPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for downloading and loading pretrained models.
    """

    config_class = AlbertConfig
    pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "albert"

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if isinstance(module, (nn.Linear)) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


ALBERT_START_DOCSTRING = r"""

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Args:
        config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

ALBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.AlbertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
"""


@add_start_docstrings(
    "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.",
    ALBERT_START_DOCSTRING,
)
class AlbertModel(AlbertPreTrainedModel):

    config_class = AlbertConfig
    pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_albert
    base_model_prefix = "albert"

    def __init__(self, config):
        super().__init__(config)

        self.config = config
        self.embeddings = AlbertEmbeddings(config)
        self.encoder = AlbertTransformer(config)
        self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
        self.pooler_activation = nn.Tanh()

        self.init_weights()
        # hyper-param for patience-based adaptive inference
        self.patience = 0
        # threshold for confidence-based adaptive inference
        self.confidence_threshold = 0.8
        # mode for fast_inference [True for patience-based/ False for confidence-based/ All classifier/ Last Classifier]
        self.mode = 'patience' # [patience/confi/all/last]

        self.inference_instances_num = 0
        self.inference_layers_num = 0

        # exits count log
        self.exits_count_list = [0] * self.config.num_hidden_layers
        # exits time log
        self.exits_time_list = [[] for _ in range(self.config.num_hidden_layers)]

        self.regression_threshold = 0

    def set_regression_threshold(self, threshold):
        self.regression_threshold = threshold

    def set_mode(self, patience='patience'):
        self.mode = patience # mode for test-time inference

    def set_patience(self, patience):
        self.patience = patience
    
    def set_exit_pos(self, exit_pos):
        self.exit_pos = exit_pos

    def set_confi_threshold(self, confidence_threshold):
        self.confidence_threshold = confidence_threshold

    def reset_stats(self):
        self.inference_instances_num = 0
        self.inference_layers_num = 0
        self.exits_count_list = [0] * self.config.num_hidden_layers
        self.exits_time_list =  [[] for _ in range(self.config.num_hidden_layers)]

    def log_stats(self):
        avg_inf_layers = self.inference_layers_num / self.inference_instances_num
        message = f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up = {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'
        print(message)

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups.
            If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there
            is a total of 4 different layers.

            These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
            while [2,3] correspond to the two inner groups of the second hidden layer.

            Any layer with in index other than [0,1,2,3] will result in an error.
            See base class PreTrainedModel for more information about head pruning
        """
        for layer, heads in heads_to_prune.items():
            group_idx = int(layer / self.config.inner_group_num)
            inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
            self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_dropout=None,
        output_layers=None,
        regression=False
    ):
        r"""
    Return:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during pre-training.

            This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Example::

        from transformers import AlbertModel, AlbertTokenizer
        import torch

        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertModel.from_pretrained('albert-base-v2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

        """

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        embedding_output = self.embeddings(
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
        encoder_outputs = embedding_output

        if self.training:
            res = []
            for i in range(self.config.num_hidden_layers):
                encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
                                                                current_layer=i,
                                                                attention_mask=extended_attention_mask,
                                                                head_mask=head_mask
                                                                )

                pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
                logits = output_layers[i](output_dropout(pooled_output))
                res.append(logits)
        elif self.mode == 'last':  # Use all layers for inference [last classifier]
            encoder_outputs = self.encoder(encoder_outputs,
                                           extended_attention_mask,
                                           head_mask=head_mask)
            pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
            res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)]
        elif self.mode == 'exact': 
            res = []
            for i in range(self.exit_pos):
                encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
                                                                current_layer=i,
                                                                attention_mask=extended_attention_mask,
                                                                head_mask=head_mask
                                                                )
                pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
                logits = output_layers[i](output_dropout(pooled_output))
                res.append(logits)
        elif self.mode == 'all': 
            tic = datetime.now()
            res = []
            for i in range(self.config.num_hidden_layers):
                encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
                                                                current_layer=i,
                                                                attention_mask=extended_attention_mask,
                                                                head_mask=head_mask
                                                                )
                pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
                logits = output_layers[i](output_dropout(pooled_output))
                toc = datetime.now()
                exit_time = (toc - tic).total_seconds()
                res.append(logits)
                self.exits_time_list[i].append(exit_time)
        elif self.mode=='patience': # fast inference for patience-based 
            if self.patience <=0:
                raise ValueError("Patience must be greater than 0")
            
            patient_counter = 0
            patient_result = None
            calculated_layer_num = 0
            # tic = datetime.now()
            for i in range(self.config.num_hidden_layers):
                calculated_layer_num += 1
                encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
                                              current_layer=i,
                                              attention_mask=extended_attention_mask,
                                              head_mask=head_mask
                                              )

                pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
                logits = output_layers[i](pooled_output)
                if regression:
                    labels = logits.detach()
                    if patient_result is not None:
                        patient_labels = patient_result.detach()
                    if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
                        patient_counter += 1
                    else:
                        patient_counter = 0
                else:
                    labels = logits.detach().argmax(dim=1)
                    if patient_result is not None:
                        patient_labels = patient_result.detach().argmax(dim=1)
                    if (patient_result is not None) and torch.all(labels.eq(patient_labels)):
                        patient_counter += 1
                    else:
                        patient_counter = 0

                patient_result = logits
                if patient_counter == self.patience:
                    break
            # toc = datetime.now()
            # self.exit_time = (toc - tic).total_seconds()
            res = [patient_result]
            self.inference_layers_num += calculated_layer_num
            self.inference_instances_num += 1
            self.current_exit_layer = calculated_layer_num
            # LOG EXIT POINTS COUNTS
            self.exits_count_list[calculated_layer_num-1] += 1
        elif self.mode == 'confi':
            if self.confidence_threshold<0 or self.confidence_threshold>1:
                raise ValueError('Confidence Threshold must be set within the range 0-1')
            calculated_layer_num = 0
            tic = datetime.now()
            for i in range(self.config.num_hidden_layers):
                calculated_layer_num += 1
                encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
                                              current_layer=i,
                                              attention_mask=extended_attention_mask,
                                              head_mask=head_mask
                                              )

                pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
                logits = output_layers[i](pooled_output)
                labels = logits.detach().argmax(dim=1)
                logits_max,_ = logits.detach().softmax(dim=1).max(dim=1)
                
                confi_result = logits
                if torch.all(logits_max.gt(self.confidence_threshold)):
                    break
            toc = datetime.now()
            self.exit_time = (toc - tic).total_seconds()
            res = [confi_result]
            self.inference_layers_num += calculated_layer_num
            self.inference_instances_num += 1
            self.current_exit_layer = calculated_layer_num
            # LOG EXIT POINTS COUNTS
            self.exits_count_list[calculated_layer_num-1] += 1
        return res


class AlbertMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.LayerNorm = nn.LayerNorm(config.embedding_size)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)
        self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
        self.activation = ACT2FN[config.hidden_act]

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.activation(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        hidden_states = self.decoder(hidden_states)

        prediction_scores = hidden_states

        return prediction_scores


@add_start_docstrings(
    "Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING,
)
class AlbertForMaskedLM(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.albert = AlbertModel(config)
        self.predictions = AlbertMLMHead(config)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings)

    def get_output_embeddings(self):
        return self.predictions.decoder

    @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
    ):
        r"""
        masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with
            labels in ``[0, ..., config.vocab_size]``

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
        loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Example::

        from transformers import AlbertTokenizer, AlbertForMaskedLM
        import torch

        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertForMaskedLM.from_pretrained('albert-base-v2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]

        """
        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
        sequence_outputs = outputs[0]

        prediction_scores = self.predictions(sequence_outputs)

        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            outputs = (masked_lm_loss,) + outputs

        return outputs


@add_start_docstrings(
    """Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    ALBERT_START_DOCSTRING,
)
class AlbertForSequenceClassification(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
        self.dropout = nn.Dropout(config.classifier_dropout_prob)
        self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)])

        self.init_weights()

    @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
        loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

        Examples::

            from transformers import AlbertTokenizer, AlbertForSequenceClassification
            import torch

            tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
            model = AlbertForSequenceClassification.from_pretrained('albert-base-v2')
            input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
            labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
            outputs = model(input_ids, labels=labels)
            loss, logits = outputs[:2]

        """

        logits = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_dropout=self.dropout,
            output_layers=self.classifiers,
            regression=self.num_labels == 1
        )

        if self.albert.mode == 'all':
            outputs = (logits,)
        else:
            outputs = (logits[-1],)

        if labels is not None:
            total_loss = None
            total_weights = 0
            for ix, logits_item in enumerate(logits):
                if self.num_labels == 1:
                    #  We are doing regression
                    loss_fct = MSELoss()
                    loss = loss_fct(logits_item.view(-1), labels.view(-1))
                else:
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1))
                if total_loss is None:
                    total_loss = loss
                else:
                    total_loss += loss * (ix + 1)
                total_weights += ix + 1
            outputs = (total_loss / total_weights,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)


@add_start_docstrings(
    """Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    ALBERT_START_DOCSTRING,
)
class AlbertForQuestionAnswering(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
        loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_scores ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        end_scores: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        # The checkpoint albert-base-v2 is not fine-tuned for question answering. Please see the
        # examples/run_squad.py example to see how to fine-tune a model to a question answering task.

        from transformers import AlbertTokenizer, AlbertForQuestionAnswering
        import torch

        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2')
        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        input_dict = tokenizer.encode_plus(question, text, return_tensors='pt')
        start_scores, end_scores = model(**input_dict)

        """

        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        outputs = (start_logits, end_logits,) + outputs[2:]
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)