Spaces:
Running
Running
File size: 7,592 Bytes
1076673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ALBERT model configuration """
from transformers.configuration_utils import PretrainedConfig
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"albert-base-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-config.json",
"albert-large-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-config.json",
"albert-xlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-config.json",
"albert-xxlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-config.json",
"albert-base-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-config.json",
"albert-large-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
"albert-xlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-config.json",
"albert-xxlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-config.json",
}
class AlbertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an :class:`~transformers.AlbertModel`.
It is used to instantiate an ALBERT model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the ALBERT `xxlarge <https://huggingface.co/albert-xxlarge-v2>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig`
for more information.
Args:
vocab_size (:obj:`int`, optional, defaults to 30000):
Vocabulary size of the ALBERT model. Defines the different tokens that
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.AlbertModel`.
embedding_size (:obj:`int`, optional, defaults to 128):
Dimensionality of vocabulary embeddings.
hidden_size (:obj:`int`, optional, defaults to 4096):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_hidden_groups (:obj:`int`, optional, defaults to 1):
Number of groups for the hidden layers, parameters in the same group are shared.
num_attention_heads (:obj:`int`, optional, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, optional, defaults to 16384):
The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
inner_group_num (:obj:`int`, optional, defaults to 1):
The number of inner repetition of attention and ffn.
hidden_act (:obj:`str` or :obj:`function`, optional, defaults to "gelu_new"):
The non-linear activation function (function or string) in the encoder and pooler.
If string, "gelu", "relu", "swish" and "gelu_new" are supported.
hidden_dropout_prob (:obj:`float`, optional, defaults to 0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, optional, defaults to 2):
The vocabulary size of the `token_type_ids` passed into :class:`~transformers.AlbertModel`.
initializer_range (:obj:`float`, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.
classifier_dropout_prob (:obj:`float`, optional, defaults to 0.1):
The dropout ratio for attached classifiers.
Example::
from transformers import AlbertConfig, AlbertModel
# Initializing an ALBERT-xxlarge style configuration
albert_xxlarge_configuration = AlbertConfig()
# Initializing an ALBERT-base style configuration
albert_base_configuration = AlbertConfig(
hidden_size=768,
num_attention_heads=12,
intermediate_size=3072,
)
# Initializing a model from the ALBERT-base style configuration
model = AlbertModel(albert_xxlarge_configuration)
# Accessing the model configuration
configuration = model.config
Attributes:
pretrained_config_archive_map (Dict[str, str]):
A dictionary containing all the available pre-trained checkpoints.
"""
pretrained_config_archive_map = ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type = "albert"
def __init__(
self,
vocab_size=30000,
embedding_size=128,
hidden_size=4096,
num_hidden_layers=12,
num_hidden_groups=1,
num_attention_heads=64,
intermediate_size=16384,
inner_group_num=1,
hidden_act="gelu_new",
hidden_dropout_prob=0,
attention_probs_dropout_prob=0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout_prob=0.1,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_hidden_groups = num_hidden_groups
self.num_attention_heads = num_attention_heads
self.inner_group_num = inner_group_num
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout_prob = classifier_dropout_prob
|