Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,712 Bytes
ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 ac1d9fa ae18532 11ee0ea ae18532 ac1d9fa ae18532 ac1d9fa ae18532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import argparse
import json
import os
import random
from warnings import filterwarnings
import gradio as gr
from diffusers.utils import logging as diffusers_logging
from transformers import logging as transformers_logging
from lib import Config, async_call, download_repo_files, generate, read_file
filterwarnings("ignore", category=FutureWarning, module="diffusers")
filterwarnings("ignore", category=FutureWarning, module="transformers")
diffusers_logging.set_verbosity_error()
transformers_logging.set_verbosity_error()
diffusers_logging.disable_progress_bar()
transformers_logging.disable_progress_bar()
# the CSS `content` attribute expects a string so we need to wrap the number in quotes
refresh_seed_js = """
() => {
const n = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER);
const button = document.getElementById("refresh");
button.style.setProperty("--seed", `"${n}"`);
return n;
}
"""
seed_js = """
(seed) => {
const button = document.getElementById("refresh");
button.style.setProperty("--seed", `"${seed}"`);
return seed;
}
"""
aspect_ratio_js = """
(ar, w, h) => {
if (!ar) return [w, h];
const [width, height] = ar.split(",");
return [parseInt(width), parseInt(height)];
}
"""
def random_fn():
prompts = read_file("data/prompts.json")
prompts = json.loads(prompts)
return gr.Textbox(value=random.choice(prompts))
async def generate_fn(*args, progress=gr.Progress(track_tqdm=True)):
if len(args) > 0:
prompt = args[0]
else:
prompt = None
if prompt is None or prompt.strip() == "":
raise gr.Error("You must enter a prompt")
try:
if Config.ZERO_GPU:
progress((0, 100), desc="ZeroGPU init")
images = await async_call(
generate,
*args,
Error=gr.Error,
Info=gr.Info,
progress=progress,
)
except RuntimeError:
raise gr.Error("Please try again later")
return images
with gr.Blocks(
head=read_file("./partials/head.html"),
css="./app.css",
js="./app.js",
theme=gr.themes.Default(
# colors
neutral_hue=gr.themes.colors.gray,
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.blue,
# sizing
text_size=gr.themes.sizes.text_md,
radius_size=gr.themes.sizes.radius_sm,
spacing_size=gr.themes.sizes.spacing_md,
# fonts
font=[gr.themes.GoogleFont("Inter"), *Config.SANS_FONTS],
font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *Config.MONO_FONTS],
).set(
layout_gap="8px",
block_shadow="0 0 #0000",
block_shadow_dark="0 0 #0000",
block_background_fill=gr.themes.colors.gray.c50,
block_background_fill_dark=gr.themes.colors.gray.c900,
),
) as demo:
gr.HTML(read_file("./partials/intro.html"))
with gr.Tabs():
with gr.TabItem("π Home"):
with gr.Column():
with gr.Group():
output_images = gr.Gallery(
elem_classes=["gallery"],
show_share_button=False,
object_fit="cover",
interactive=False,
show_label=False,
label="Output",
format="png",
columns=2,
)
prompt = gr.Textbox(
placeholder="What do you want to see?",
autoscroll=False,
show_label=False,
label="Prompt",
max_lines=3,
lines=3,
)
# Buttons
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
random_btn = gr.Button(
elem_classes=["icon-button", "popover"],
variant="secondary",
elem_id="random",
min_width=0,
value="π²",
)
refresh_btn = gr.Button(
elem_classes=["icon-button", "popover"],
variant="secondary",
elem_id="refresh",
min_width=0,
value="π",
)
clear_btn = gr.ClearButton(
elem_classes=["icon-button", "popover"],
components=[output_images],
variant="secondary",
elem_id="clear",
min_width=0,
value="ποΈ",
)
with gr.TabItem("βοΈ Menu"):
with gr.Group():
negative_prompt = gr.Textbox(
value="nsfw+",
label="Negative Prompt",
lines=2,
)
with gr.Row():
model = gr.Dropdown(
choices=Config.MODELS,
filterable=False,
value=Config.MODEL,
label="Model",
min_width=240,
)
scheduler = gr.Dropdown(
choices=Config.SCHEDULERS.keys(),
value=Config.SCHEDULER,
elem_id="scheduler",
label="Scheduler",
filterable=False,
)
with gr.Row():
styles = json.loads(read_file("data/styles.json"))
style_ids = list(styles.keys())
style_ids = [sid for sid in style_ids if not sid.startswith("_")]
style = gr.Dropdown(
value=Config.STYLE,
label="Style",
min_width=240,
choices=[("None", None)] + [(styles[sid]["name"], sid) for sid in style_ids],
)
with gr.Row():
guidance_scale = gr.Slider(
value=Config.GUIDANCE_SCALE,
label="Guidance Scale",
minimum=1.0,
maximum=15.0,
step=0.1,
)
inference_steps = gr.Slider(
value=Config.INFERENCE_STEPS,
label="Inference Steps",
minimum=1,
maximum=50,
step=1,
)
deepcache_interval = gr.Slider(
value=Config.DEEPCACHE_INTERVAL,
label="DeepCache",
minimum=1,
maximum=4,
step=1,
)
with gr.Row():
width = gr.Slider(
value=Config.WIDTH,
label="Width",
minimum=512,
maximum=1536,
step=64,
)
height = gr.Slider(
value=Config.HEIGHT,
label="Height",
minimum=512,
maximum=1536,
step=64,
)
aspect_ratio = gr.Dropdown(
value=f"{Config.WIDTH},{Config.HEIGHT}",
label="Aspect Ratio",
filterable=False,
choices=[
("Custom", None),
("4:7 (768x1344)", "768,1344"),
("7:9 (896x1152)", "896,1152"),
("1:1 (1024x1024)", "1024,1024"),
("9:7 (1152x896)", "1152,896"),
("7:4 (1344x768)", "1344,768"),
],
)
with gr.Row():
file_format = gr.Dropdown(
choices=["png", "jpeg", "webp"],
label="File Format",
filterable=False,
value="png",
)
num_images = gr.Dropdown(
choices=list(range(1, 5)),
value=Config.NUM_IMAGES,
filterable=False,
label="Images",
)
scale = gr.Dropdown(
choices=[(f"{s}x", s) for s in Config.SCALES],
filterable=False,
value=Config.SCALE,
label="Scale",
)
seed = gr.Number(
value=Config.SEED,
label="Seed",
minimum=-1,
maximum=(2**64) - 1,
)
with gr.Row():
use_karras = gr.Checkbox(
elem_classes=["checkbox"],
label="Karras Ο",
value=True,
)
use_refiner = gr.Checkbox(
elem_classes=["checkbox"],
label="Refiner",
value=False,
)
random_btn.click(random_fn, inputs=[], outputs=[prompt], show_api=False)
refresh_btn.click(None, inputs=[], outputs=[seed], js=refresh_seed_js)
seed.change(None, inputs=[seed], outputs=[], js=seed_js)
file_format.change(
lambda f: gr.Gallery(format=f),
inputs=[file_format],
outputs=[output_images],
show_api=False,
)
# input events are only user input; change events are both user and programmatic
aspect_ratio.input(
None,
inputs=[aspect_ratio, width, height],
outputs=[width, height],
js=aspect_ratio_js,
)
# show "Custom" aspect ratio when manually changing width or height
gr.on(
triggers=[width.input, height.input],
fn=None,
inputs=[],
outputs=[aspect_ratio],
js="() => { return null; }",
)
gr.on(
triggers=[generate_btn.click, prompt.submit],
fn=generate_fn,
api_name="generate",
outputs=[output_images],
inputs=[
prompt,
negative_prompt,
style,
seed,
model,
scheduler,
width,
height,
guidance_scale,
inference_steps,
deepcache_interval,
scale,
num_images,
use_karras,
use_refiner,
],
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
parser.add_argument("-s", "--server", type=str, metavar="STR", default="0.0.0.0")
parser.add_argument("-p", "--port", type=int, metavar="INT", default=7860)
args = parser.parse_args()
# download to hub cache
for repo_id, allow_patterns in Config.HF_MODELS.items():
download_repo_files(repo_id, allow_patterns, token=Config.HF_TOKEN)
# https://www.gradio.app/docs/gradio/interface#interface-queue
demo.queue(default_concurrency_limit=1).launch(
server_name=args.server,
server_port=args.port,
)
|