Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,183 Bytes
ae18532 7f1904f ae18532 7f1904f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# Diffusion XL
TL;DR: Enter a prompt or roll the `🎲` and press `Generate`.
## Prompting
Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel) for weighting. See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md) to learn more and read [Civitai](https://civitai.com)'s guide on [prompting](https://education.civitai.com/civitais-prompt-crafting-guide-part-1-basics/) for best practices.
### Arrays
Arrays allow you to generate different images from a single prompt. For example, `[[cat,corgi]]` will expand into 2 separate prompts. Make sure `Images` is set accordingly (e.g., 2). Only works for the positive prompt. Inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503).
## Styles
Styles are prompt templates from twri's [sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node. Start with a subject like "cat", pick a style, and iterate from there.
## Scale
Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) from [ai-forever](https://huggingface.co/ai-forever/Real-ESRGAN).
## Models
Each model checkpoint has a different aesthetic:
* [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1): anime
* [fluently/Fluently-XL-Final](https://huggingface.co/fluently/Fluently-XL-Final): general purpose
* [SG161222/RealVisXL_V5.0](https://huggingface.co/SG161222/RealVisXL_V5.0): photorealistic
* [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0): base
## Advanced
### DeepCache
[DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed:
* `1`: no caching (default)
* `2`: more quality
* `3`: balanced
* `4`: more speed
### Refiner
Use the [ensemble of expert denoisers](https://research.nvidia.com/labs/dir/eDiff-I/) technique, where the first 80% of timesteps are denoised by the base model and the remaining 80% by the [refiner](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0). Enabled by default. Not available with image-to-image pipelines.
|