Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,811 Bytes
ae18532 b00d4fe 163a3a9 ae18532 0d34381 b00d4fe ae18532 b00d4fe ae18532 0d34381 ae18532 0d34381 ae18532 0177258 b00d4fe ae18532 b00d4fe 6ad0411 0d34381 ae18532 67ca03a ae18532 163a3a9 ae18532 0177258 67ca03a 6ad0411 80551a9 67ca03a b00d4fe 6ad0411 b00d4fe ae18532 6ad0411 ae18532 6ad0411 ae18532 6ad0411 ae18532 6ad0411 ae18532 b00d4fe ae18532 0d34381 ae18532 6ad0411 0d34381 ae18532 163a3a9 ae18532 b00d4fe ae18532 67ca03a ae18532 b00d4fe ae18532 0d34381 b00d4fe ae18532 b00d4fe ae18532 0d34381 b00d4fe 0d34381 b00d4fe 0d34381 b00d4fe 6ad0411 80551a9 af35186 0d34381 ae18532 af35186 0d34381 ae18532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import time
from datetime import datetime
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import PromptParser
from gradio import Error, Info, Progress
from spaces import GPU
from .loader import Loader
from .logger import Logger
from .utils import cuda_collect, get_output_types, timer
@GPU
def generate(
positive_prompt="",
negative_prompt="",
seed=None,
model="stabilityai/stable-diffusion-xl-base-1.0",
scheduler="Euler",
width=1024,
height=1024,
guidance_scale=6.0,
inference_steps=40,
deepcache=1,
scale=1,
num_images=1,
use_karras=False,
use_refiner=False,
progress=Progress(track_tqdm=True),
):
if not torch.cuda.is_available():
raise Error("CUDA not available")
if positive_prompt.strip() == "":
raise Error("You must enter a prompt")
KIND = "txt2img"
EMBEDDINGS_TYPE = ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED
start = time.perf_counter()
log = Logger("generate")
log.info(f"Generating {num_images} image{'s' if num_images > 1 else ''}...")
loader = Loader()
loader.load(
KIND,
model,
scheduler,
deepcache,
scale,
use_karras,
use_refiner,
progress,
)
refiner = loader.refiner
pipeline = loader.pipeline
upscaler = loader.upscaler
# Probably a typo in the config
if pipeline is None:
raise Error(f"Error loading {model}")
# Prompt embeddings for base and refiner
compel_1 = Compel(
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2],
requires_pooled=[False, True],
returned_embeddings_type=EMBEDDINGS_TYPE,
dtype_for_device_getter=lambda _: pipeline.dtype,
device=pipeline.device,
)
compel_2 = Compel(
text_encoder=[pipeline.text_encoder_2],
tokenizer=[pipeline.tokenizer_2],
requires_pooled=[True],
returned_embeddings_type=EMBEDDINGS_TYPE,
dtype_for_device_getter=lambda _: pipeline.dtype,
device=pipeline.device,
)
# https://pytorch.org/docs/stable/generated/torch.manual_seed.html
if seed is None or seed < 0:
seed = int(datetime.now().timestamp() * 1e6) % (2**64)
# Increment the seed after each iteration
images = []
current_seed = seed
for i in range(num_images):
try:
generator = torch.Generator(device=pipeline.device).manual_seed(current_seed)
conditioning_1, pooled_1 = compel_1([positive_prompt, negative_prompt])
conditioning_2, pooled_2 = compel_2([positive_prompt, negative_prompt])
except PromptParser.ParsingException:
raise Error("Invalid prompt")
pipeline_output_type, refiner_output_type = get_output_types(scale, use_refiner)
pipeline_kwargs = {
"width": width,
"height": height,
"denoising_end": 0.8 if use_refiner else None,
"generator": generator,
"output_type": pipeline_output_type,
"guidance_scale": guidance_scale,
"num_inference_steps": inference_steps,
"prompt_embeds": conditioning_1[0:1],
"pooled_prompt_embeds": pooled_1[0:1],
"negative_prompt_embeds": conditioning_1[1:2],
"negative_pooled_prompt_embeds": pooled_1[1:2],
}
refiner_kwargs = {
"denoising_start": 0.8,
"generator": generator,
"output_type": refiner_output_type,
"guidance_scale": guidance_scale,
"num_inference_steps": inference_steps,
"prompt_embeds": conditioning_2[0:1],
"pooled_prompt_embeds": pooled_2[0:1],
"negative_prompt_embeds": conditioning_2[1:2],
"negative_pooled_prompt_embeds": pooled_2[1:2],
}
image = pipeline(**pipeline_kwargs).images[0]
if use_refiner:
refiner_kwargs["image"] = image
image = refiner(**refiner_kwargs).images[0]
# Use a tuple so gallery images get captions
images.append((image, str(current_seed)))
current_seed += 1
# Upscale
if scale > 1:
with timer(f"Upscaling {num_images} images {scale}x", logger=log.info):
for i, image in enumerate(images):
image = upscaler.predict(image[0])
seed = images[i][1]
images[i] = (image, seed)
# Flush cache after generating
cuda_collect()
end = time.perf_counter()
msg = f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {end - start:.2f}s"
log.info(msg)
if Info:
Info(msg)
return images
|