Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,907 Bytes
ae18532 163a3a9 ae18532 163a3a9 ae18532 0d34381 6ad0411 ae18532 0d34381 ae18532 fe94951 ae18532 1fdf076 fe94951 1fdf076 fe94951 1fdf076 fe94951 ae18532 fe94951 ae18532 163a3a9 ae18532 0d34381 ae18532 0d34381 ae18532 0177258 ae18532 163a3a9 ae18532 6ad0411 0d34381 ae18532 163a3a9 ae18532 163a3a9 ae18532 163a3a9 ae18532 163a3a9 ae18532 67ca03a ae18532 163a3a9 ae18532 0177258 67ca03a 6ad0411 80551a9 67ca03a 6ad0411 ae18532 6ad0411 ae18532 6ad0411 ae18532 6ad0411 ae18532 6ad0411 ae18532 0d34381 ae18532 0d34381 ae18532 6ad0411 0d34381 ae18532 163a3a9 ae18532 67ca03a ae18532 67ca03a ae18532 0d34381 ae18532 0d34381 ae18532 6ad0411 ae18532 0d34381 ae18532 163a3a9 ae18532 0d34381 6ad0411 80551a9 af35186 0d34381 ae18532 af35186 0d34381 ae18532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import time
from datetime import datetime
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import PromptParser
from spaces import GPU
from .config import Config
from .loader import Loader
from .logger import Logger
from .utils import cuda_collect, safe_progress, timer
# Dynamic signature for the GPU duration function; max 60s per image
def gpu_duration(**kwargs):
loading = 15
duration = 15
width = kwargs.get("width", 1024)
height = kwargs.get("height", 1024)
scale = kwargs.get("scale", 1)
num_images = kwargs.get("num_images", 1)
use_refiner = kwargs.get("use_refiner", False)
size = width * height
if use_refiner:
loading += 10
if size > 1_100_000:
duration += 5
if size > 1_600_000:
duration += 5
if scale == 2:
duration += 5
if scale == 4:
duration += 10
return loading + (duration * num_images)
@GPU(duration=gpu_duration)
def generate(
positive_prompt,
negative_prompt="",
seed=None,
model="stabilityai/stable-diffusion-xl-base-1.0",
scheduler="Euler",
width=1024,
height=1024,
guidance_scale=6.0,
inference_steps=40,
deepcache=1,
scale=1,
num_images=1,
use_karras=False,
use_refiner=False,
Error=Exception,
Info=None,
progress=None,
):
KIND = "txt2img"
CURRENT_STEP = 0
CURRENT_IMAGE = 1
EMBEDDINGS_TYPE = ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED
start = time.perf_counter()
log = Logger("generate")
log.info(f"Generating {num_images} image{'s' if num_images > 1 else ''}...")
if Config.ZERO_GPU:
safe_progress(progress, 100, 100, "ZeroGPU init")
if not torch.cuda.is_available():
raise Error("CUDA not available")
# https://pytorch.org/docs/stable/generated/torch.manual_seed.html
if seed is None or seed < 0:
seed = int(datetime.now().timestamp() * 1e6) % (2**64)
# custom progress bar for multiple images
def callback_on_step_end(pipeline, step, timestep, latents):
nonlocal CURRENT_IMAGE, CURRENT_STEP
if progress is not None:
# calculate total steps for img2img based on denoising strength
strength = 1
total_steps = min(int(inference_steps * strength), inference_steps)
# if steps are different we're in the refiner
refining = False
if CURRENT_STEP == step:
CURRENT_STEP = step + 1
else:
refining = True
CURRENT_STEP += 1
progress(
(CURRENT_STEP, total_steps),
desc=f"{'Refining' if refining else 'Generating'} image {CURRENT_IMAGE}/{num_images}",
)
return latents
loader = Loader()
loader.load(
KIND,
model,
scheduler,
deepcache,
scale,
use_karras,
use_refiner,
progress,
)
refiner = loader.refiner
pipeline = loader.pipeline
upscaler = loader.upscaler
if pipeline is None:
raise Error(f"Error loading {model}")
# prompt embeds for base and refiner
compel_1 = Compel(
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2],
requires_pooled=[False, True],
returned_embeddings_type=EMBEDDINGS_TYPE,
dtype_for_device_getter=lambda _: pipeline.dtype,
device=pipeline.device,
)
compel_2 = Compel(
text_encoder=[pipeline.text_encoder_2],
tokenizer=[pipeline.tokenizer_2],
requires_pooled=[True],
returned_embeddings_type=EMBEDDINGS_TYPE,
dtype_for_device_getter=lambda _: pipeline.dtype,
device=pipeline.device,
)
images = []
current_seed = seed
safe_progress(progress, 0, num_images, f"Generating image 0/{num_images}")
for i in range(num_images):
try:
generator = torch.Generator(device=pipeline.device).manual_seed(current_seed)
conditioning_1, pooled_1 = compel_1([positive_prompt, negative_prompt])
conditioning_2, pooled_2 = compel_2([positive_prompt, negative_prompt])
except PromptParser.ParsingException:
raise Error("Invalid prompt")
# refiner expects latents; upscaler expects numpy array
pipe_output_type = "pil"
refiner_output_type = "pil"
if use_refiner:
pipe_output_type = "latent"
if scale > 1:
refiner_output_type = "np"
else:
if scale > 1:
pipe_output_type = "np"
pipe_kwargs = {
"width": width,
"height": height,
"denoising_end": 0.8 if use_refiner else None,
"generator": generator,
"output_type": pipe_output_type,
"guidance_scale": guidance_scale,
"num_inference_steps": inference_steps,
"prompt_embeds": conditioning_1[0:1],
"pooled_prompt_embeds": pooled_1[0:1],
"negative_prompt_embeds": conditioning_1[1:2],
"negative_pooled_prompt_embeds": pooled_1[1:2],
}
refiner_kwargs = {
"denoising_start": 0.8,
"generator": generator,
"output_type": refiner_output_type,
"guidance_scale": guidance_scale,
"num_inference_steps": inference_steps,
"prompt_embeds": conditioning_2[0:1],
"pooled_prompt_embeds": pooled_2[0:1],
"negative_prompt_embeds": conditioning_2[1:2],
"negative_pooled_prompt_embeds": pooled_2[1:2],
}
if progress is not None:
pipe_kwargs["callback_on_step_end"] = callback_on_step_end
refiner_kwargs["callback_on_step_end"] = callback_on_step_end
try:
image = pipeline(**pipe_kwargs).images[0]
if use_refiner:
refiner_kwargs["image"] = image
image = refiner(**refiner_kwargs).images[0]
images.append((image, str(current_seed)))
current_seed += 1
finally:
CURRENT_STEP = 0
CURRENT_IMAGE += 1
# Upscale
if scale > 1:
msg = f"Upscaling {scale}x"
with timer(msg):
safe_progress(progress, 0, num_images, desc=msg)
for i, image in enumerate(images):
images = upscaler.predict(image[0])
images[i] = image
safe_progress(progress, i + 1, num_images, desc=msg)
# Flush memory after generating
cuda_collect()
end = time.perf_counter()
msg = f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {end - start:.2f}s"
log.info(msg)
# Alert if notifier provided
if Info:
Info(msg)
return images
|