File size: 10,500 Bytes
ae18532
 
 
 
 
 
 
 
0d34381
ae18532
0d34381
ae18532
 
 
 
 
 
 
 
 
 
 
 
 
80551a9
0d34381
ae18532
 
80551a9
 
ae18532
80551a9
 
 
 
 
 
ae18532
 
 
bb42c8d
 
 
 
 
 
 
 
80551a9
 
 
 
 
 
 
 
af35186
 
 
163a3a9
80551a9
af35186
 
 
80551a9
 
 
0d34381
80551a9
 
 
 
 
 
 
 
af35186
 
 
0d34381
 
 
 
 
80551a9
 
ae18532
80551a9
163a3a9
80551a9
 
 
 
 
 
 
 
 
ae18532
80551a9
ae18532
 
80551a9
0d34381
 
ae18532
 
0d34381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80551a9
 
0d34381
80551a9
 
 
af35186
 
80551a9
0d34381
80551a9
 
 
 
 
 
0d34381
80551a9
af35186
 
 
80551a9
0d34381
80551a9
ae18532
bb42c8d
0d34381
 
 
 
 
 
 
 
 
bb42c8d
163a3a9
ae18532
0d34381
ae18532
af35186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae18532
0d34381
ae18532
 
0d34381
ae18532
 
 
 
163a3a9
ae18532
163a3a9
ae18532
 
 
 
 
 
 
 
0177258
ae18532
 
 
 
 
 
 
163a3a9
ae18532
 
 
 
 
 
 
 
 
 
 
 
 
80551a9
163a3a9
ae18532
 
 
67ca03a
ae18532
 
 
 
 
 
 
 
163a3a9
ae18532
0d34381
ae18532
0d34381
ae18532
 
3338233
 
ae18532
0d34381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gc
from threading import Lock

import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL

from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
from .utils import clear_cuda_cache, timer


class Loader:
    _instance = None
    _lock = Lock()

    def __new__(cls):
        with cls._lock:
            if cls._instance is None:
                cls._instance = super().__new__(cls)
                cls._instance.pipe = None
                cls._instance.model = None
                cls._instance.refiner = None
                cls._instance.upscaler = None
                cls._instance.log = Logger("Loader")
        return cls._instance

    def _should_unload_refiner(self, refiner=False):
        if self.refiner is None:
            return False
        if not refiner:
            return True
        return False

    def _should_unload_upscaler(self, scale=1):
        if self.upscaler is not None and self.upscaler.scale != scale:
            return True
        return False

    def _should_unload_deepcache(self, interval=1):
        has_deepcache = hasattr(self.pipe, "deepcache")
        if has_deepcache and interval == 1:
            return True
        if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
            return True
        return False

    def _should_unload_pipeline(self, model=""):
        if self.pipe is None:
            return False
        if self.model and self.model.lower() != model.lower():
            return True
        return False

    def _unload_refiner(self):
        if self.refiner is not None:
            with timer("Unloading refiner"):
                self.refiner.to("cpu", silence_dtype_warnings=True)

    def _unload_upscaler(self):
        if self.upscaler is not None:
            with timer(f"Unloading {self.upscaler.scale}x upscaler"):
                self.upscaler.to("cpu")

    def _unload_deepcache(self):
        if self.pipe.deepcache is not None:
            self.log.info("Disabling DeepCache")
            self.pipe.deepcache.disable()
            delattr(self.pipe, "deepcache")
            if self.refiner is not None:
                if hasattr(self.refiner, "deepcache"):
                    self.refiner.deepcache.disable()
                    delattr(self.refiner, "deepcache")

    def _unload_pipeline(self):
        if self.pipe is not None:
            with timer(f"Unloading {self.model}"):
                self.pipe.to("cpu", silence_dtype_warnings=True)
                if self.refiner is not None:
                    self.refiner.vae = None
                    self.refiner.scheduler = None
                    self.refiner.tokenizer_2 = None
                    self.refiner.text_encoder_2 = None

    def _unload(self, model, refiner, deepcache, scale):
        to_unload = []
        if self._should_unload_deepcache(deepcache):  # remove deepcache first
            self._unload_deepcache()

        if self._should_unload_refiner(refiner):
            self._unload_refiner()
            to_unload.append("refiner")

        if self._should_unload_upscaler(scale):
            self._unload_upscaler()
            to_unload.append("upscaler")

        if self._should_unload_pipeline(model):
            self._unload_pipeline()
            to_unload.append("model")
            to_unload.append("pipe")

        # Flush cache and run garbage collector
        clear_cuda_cache()
        for component in to_unload:
            setattr(self, component, None)
        gc.collect()

    def _should_load_refiner(self, refiner=False):
        if self.refiner is None and refiner:
            return True
        return False

    def _should_load_upscaler(self, scale=1):
        if self.upscaler is None and scale > 1:
            return True
        return False

    def _should_load_deepcache(self, interval=1):
        has_deepcache = hasattr(self.pipe, "deepcache")
        if not has_deepcache and interval != 1:
            return True
        if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
            return True
        return False

    def _should_load_pipeline(self):
        if self.pipe is None:
            return True
        return False

    def _load_refiner(self, refiner, progress, **kwargs):
        if self._should_load_refiner(refiner):
            model = Config.REFINER_MODEL
            pipeline = Config.PIPELINES["img2img"]
            try:
                with timer(f"Loading {model}"):
                    self.refiner = pipeline.from_pretrained(model, **kwargs).to("cuda")
            except Exception as e:
                self.log.error(f"Error loading {model}: {e}")
                self.refiner = None
                return
        if self.refiner is not None:
            self.refiner.set_progress_bar_config(disable=progress is not None)

    def _load_upscaler(self, scale=1):
        if self._should_load_upscaler(scale):
            try:
                with timer(f"Loading {scale}x upscaler"):
                    self.upscaler = RealESRGAN(scale, device=self.pipe.device)
                    self.upscaler.load_weights()
            except Exception as e:
                self.log.error(f"Error loading {scale}x upscaler: {e}")
                self.upscaler = None

    def _load_deepcache(self, interval=1):
        if self._should_load_deepcache(interval):
            self.log.info("Enabling DeepCache")
            self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
            self.pipe.deepcache.set_params(cache_interval=interval)
            self.pipe.deepcache.enable()
            if self.refiner is not None:
                self.refiner.deepcache = DeepCacheSDHelper(pipe=self.refiner)
                self.refiner.deepcache.set_params(cache_interval=interval)
                self.refiner.deepcache.enable()

    def _load_pipeline(self, kind, model, progress, **kwargs):
        pipeline = Config.PIPELINES[kind]
        if self._should_load_pipeline():
            try:
                with timer(f"Loading {model}"):
                    self.model = model
                    if model.lower() in Config.MODEL_CHECKPOINTS.keys():
                        self.pipe = pipeline.from_single_file(
                            f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
                            **kwargs,
                        ).to("cuda")
                    else:
                        self.pipe = pipeline.from_pretrained(model, **kwargs).to("cuda")
                    if self.refiner is not None:
                        self.refiner.vae = self.pipe.vae
                        self.refiner.scheduler = self.pipe.scheduler
                        self.refiner.tokenizer_2 = self.pipe.tokenizer_2
                        self.refiner.text_encoder_2 = self.pipe.text_encoder_2
                        self.refiner.to(self.pipe.device)
            except Exception as e:
                self.log.error(f"Error loading {model}: {e}")
                self.model = None
                self.pipe = None
                self.refiner = None
                return
        if not isinstance(self.pipe, pipeline):
            self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
        if self.pipe is not None:
            self.pipe.set_progress_bar_config(disable=progress is not None)

    def load(self, kind, model, scheduler, deepcache, scale, karras, refiner, progress):
        scheduler_kwargs = {
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "beta_schedule": "scaled_linear",
            "timestep_spacing": "leading",
            "steps_offset": 1,
        }

        if scheduler not in ["DDIM", "Euler a"]:
            scheduler_kwargs["use_karras_sigmas"] = karras

        # https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
        if scheduler == "DDIM":
            scheduler_kwargs["clip_sample"] = False
            scheduler_kwargs["set_alpha_to_one"] = False

        if model.lower() not in Config.MODEL_CHECKPOINTS.keys():
            variant = "fp16"
        else:
            variant = None

        dtype = torch.float16
        pipe_kwargs = {
            "variant": variant,
            "torch_dtype": dtype,
            "add_watermarker": False,
            "scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
            "vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype),
        }

        self._unload(model, refiner, deepcache, scale)
        self._load_pipeline(kind, model, progress, **pipe_kwargs)

        # error loading model
        if self.pipe is None:
            return

        same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
        same_karras = (
            not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
            or self.pipe.scheduler.config.use_karras_sigmas == karras
        )

        # same model, different scheduler
        if self.model.lower() == model.lower():
            if not same_scheduler:
                self.log.info(f"Enabling {scheduler}")
            if not same_karras:
                self.log.info(f"{'Enabling' if karras else 'Disabling'} Karras sigmas")
            if not same_scheduler or not same_karras:
                self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
                if self.refiner is not None:
                    self.refiner.scheduler = self.pipe.scheduler

        if self._should_load_refiner(refiner):
            # https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/model_index.json
            refiner_kwargs = {
                "variant": "fp16",
                "torch_dtype": dtype,
                "add_watermarker": False,
                "requires_aesthetics_score": True,
                "force_zeros_for_empty_prompt": False,
                "vae": self.pipe.vae,
                "scheduler": self.pipe.scheduler,
                "tokenizer_2": self.pipe.tokenizer_2,
                "text_encoder_2": self.pipe.text_encoder_2,
            }
            self._load_refiner(refiner, progress, **refiner_kwargs)  # load refiner before deepcache

        if self._should_load_deepcache(deepcache):
            self._load_deepcache(deepcache)

        if self._should_load_upscaler(scale):
            self._load_upscaler(scale)