File size: 7,604 Bytes
4af74ed
 
 
 
 
 
 
 
 
a891744
4af74ed
 
 
 
 
 
 
 
 
 
 
 
a891744
4af74ed
a891744
4af74ed
 
 
 
 
 
 
 
 
8731543
4af74ed
 
a891744
 
 
4af74ed
 
 
 
 
 
 
 
 
8731543
 
 
 
4af74ed
 
 
 
 
a891744
4af74ed
a891744
4af74ed
 
 
 
 
 
a891744
4af74ed
 
 
a891744
4af74ed
 
 
 
a891744
 
 
 
 
4af74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a891744
4af74ed
 
 
 
 
a891744
 
 
18c03c5
a891744
 
 
 
18c03c5
a891744
 
4af74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6da8e24
a891744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4af74ed
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import random
from functools import partial

import gradio as gr
import numpy as np
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("adamcasson/ul2-tinystories")


def mask_spans(
    tokens,
    mu,
    r,
    vocab_size,
    eos_id,
    prepend_id=None,
    prefix_lm=False,
):
    masked_tokens = tokens[:]

    encoder_inputs = [prepend_id] if prepend_id is not None else []
    encoder_mask = [1] if prepend_id is not None else []
    targets = []
    targets_mask = []

    # Original T5 code reused tokens at the end of vocab for sentinels
    # https://github.com/google-research/text-to-text-transfer-transformer/blob/258fd30687e6c60d18b7204d009dc5c753142987/t5/data/preprocessors.py#L3106C6-L3106C6
    sentinel_id = vocab_size - 1

    if prefix_lm:
        # n = 1
        mu = max(1, int(len(tokens) * r))
        start = max(
            0, len(tokens) - random.randint(1, int(2 * mu))  # sample from uniform distribution for S denoisers
        )  # max to handle start < 0
        encoder_inputs += tokens[:start] + [sentinel_id]
        encoder_mask += ([1] * len(tokens[:start])) + [0]
        targets += [sentinel_id] + tokens[start:]
        targets_mask += [0] + ([1] * len(tokens[start:]))
        for i in range(start, len(tokens)):
            masked_tokens[i] = -1

    else:
        # n = ceil(len(tokens) / mu)
        prev_span_unmasked = False
        start = 0
        end = 0
        while start < len(tokens):
            # for R and X denoisers, sample random span length from normal distribution bounded from 1 to 2 * mu.
            # std of 0.25 * mu is arbitrary, not specified in paper but makes a sane looking distribution
            #  at extreme ends of span length means (from 3 to 64).
            length = max(1, min(int(2 * mu), int(np.round(np.random.normal(mu, 0.25 * mu)))))
            end = min(start + length, len(tokens))

            # randomly decide if span should be masked
            if np.random.binomial(1, p=r):
                encoder_inputs.append(sentinel_id)
                encoder_mask.append(0)
                targets += tokens[start:end]
                targets_mask += ([1] * len(tokens[start:end]))
                for i in range(start, end):
                    masked_tokens[i] = -1
                prev_span_unmasked = False
                sentinel_id -= 1
            else:
                encoder_inputs += tokens[start:end]
                encoder_mask += ([1] * len(tokens[start:end]))
                # if previous span was also unmasked we don't need to keep adding the sentinel token
                if not prev_span_unmasked:
                    targets.append(sentinel_id)
                    targets_mask.append(0)
                    prev_span_unmasked = True
            start = end

    targets.append(eos_id)
    targets_mask.append(1)
    decoder_inputs = [eos_id] + targets[:-1]
    decoder_mask = [1] + targets_mask[:-1]

    return encoder_inputs, encoder_mask, decoder_inputs, decoder_mask, targets, targets_mask, masked_tokens


# Create mixture-of-denoisers
denoiser_map = {
    "R (µ = 3, r = 0.15)": partial(
        mask_spans,
        mu=3,
        r=0.15,
        vocab_size=tokenizer.vocab_size,
        eos_id=tokenizer.eos_token_id,
        prepend_id=tokenizer.vocab["[R]"],
    ),
    "R (µ = 8, r = 0.15)": partial(
        mask_spans,
        mu=8,
        r=0.15,
        vocab_size=tokenizer.vocab_size,
        eos_id=tokenizer.eos_token_id,
        prepend_id=tokenizer.vocab["[R]"],
    ),
    "S (r = 0.25)": partial(
        mask_spans,
        mu=None,
        r=0.25,
        vocab_size=tokenizer.vocab_size,
        eos_id=tokenizer.eos_token_id,
        prefix_lm=True,
        prepend_id=tokenizer.vocab["[S]"],
    ),
    "X (µ = 3, r = 0.5)": partial(
        mask_spans,
        mu=3,
        r=0.5,
        vocab_size=tokenizer.vocab_size,
        eos_id=tokenizer.eos_token_id,
        prepend_id=tokenizer.vocab["[X]"],
    ),
    "X (µ = 8, r = 0.5)": partial(
        mask_spans,
        mu=8,
        r=0.5,
        vocab_size=tokenizer.vocab_size,
        eos_id=tokenizer.eos_token_id,
        prepend_id=tokenizer.vocab["[X]"],
    ),
    "X (µ = 32, r = 0.15)": partial(
        mask_spans,
        mu=32,
        r=0.15,
        vocab_size=tokenizer.vocab_size,
        eos_id=tokenizer.eos_token_id,
        prepend_id=tokenizer.vocab["[X]"],
    ),
    "X (µ = 32, r = 0.5)": partial(
        mask_spans,
        mu=32,
        r=0.5,
        vocab_size=tokenizer.vocab_size,
        eos_id=tokenizer.eos_token_id,
        prepend_id=tokenizer.vocab["[X]"],
    ),
}

def mask_viz(denoiser, text):
    seq = tokenizer.encode(text)
    tokens = tokenizer.tokenize(text)

    enc_in, enc_mask, dec_in, dec_mask, targets, targets_mask, mask = denoiser_map[denoiser](seq)
    
    highlight_tok = []
    for tok, tok_mask in zip(tokens, mask):
        highlight_tok.append((tok.replace("Ġ", " ").replace("Ċ", "\n"), "masked" if tok_mask == -1 else "unmasked"))

    highlight_enc = []
    enc_tok = tokenizer.convert_ids_to_tokens(enc_in)
    for id, tok, tok_mask in zip(enc_in, enc_tok, enc_mask):
        highlight_enc.append((tok.replace("Ġ", " ").replace("Ċ", "\n") if tok_mask == 1 else f" {id}", "masked" if tok_mask == 0 else "unmasked"))

    highlight_dec = []
    dec_tok = tokenizer.convert_ids_to_tokens(dec_in)
    for id, tok, tok_mask in zip(dec_in, dec_tok, dec_mask):
        highlight_dec.append((tok.replace("Ġ", " ").replace("Ċ", "\n") if tok_mask == 1 else f" {id}", "masked" if tok_mask == 0 else "unmasked"))

    return highlight_tok, highlight_enc, highlight_dec

iface = gr.Interface(
    fn=mask_viz,
    inputs=[
        gr.Dropdown(
            label="Denoiser",
            choices=[
                "R (µ = 3, r = 0.15)",
                "R (µ = 8, r = 0.15)",
                "S (r = 0.25)",
                "X (µ = 3, r = 0.5)",
                "X (µ = 8, r = 0.5)",
                "X (µ = 32, r = 0.15)",
                "X (µ = 32, r = 0.5)",
            ],
            value="R (µ = 3, r = 0.15)",
        ),
        gr.Textbox(
            value='Once upon a time, there was a clever little dog named Max. Max loved to run and play with his friends in the park. One day, Max was running very fast when he fell and hurt his knee. Max went to his friend, the wise old owl, and said, "Owl, my knee hurts. What can I do?" The owl thought for a moment and said, "Max, you should test your knee. Try to walk slowly and see if it still hurts." So Max tested his knee by walking slowly. At first, it hurt a little, but soon Max felt better. He said, "Thank you, Owl, for your help. Now I can play with my friends again." Max was so happy that he could play with his friends without pain. He learned that sometimes, it was good to slow down and listen to his body. And Max and his friends played happily in the park ever after.'
        ),
    ],
    outputs=[
        gr.HighlightedText(
            label="Corrupted spans",
            combine_adjacent=True,
            show_legend=True,
            color_map={"unmasked": "green", "masked": "red"}
        ),
        gr.HighlightedText(
            label="Encoder input",
            combine_adjacent=True,
            show_legend=True,
            color_map={"unmasked": "green", "masked": "red"}
        ),
        gr.HighlightedText(
            label="Decoder input",
            combine_adjacent=True,
            show_legend=True,
            color_map={"unmasked": "green", "masked": "red"}
        ),
    ],
)

iface.launch()