Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,546 Bytes
ad88a0b 61fbdeb ad88a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
import numpy as np
import pytorch_lightning as pl
from diffusers import UNet2DConditionModel
from adaface.util import UNetEnsemble, create_consistentid_pipeline
from diffusers import UNet2DConditionModel
from omegaconf.listconfig import ListConfig
def create_unet_teacher(teacher_type, device='cpu', **kwargs):
# If teacher_type is a list with only one element, we dereference it.
if isinstance(teacher_type, (tuple, list, ListConfig)) and len(teacher_type) == 1:
teacher_type = teacher_type[0]
if teacher_type == "arc2face":
return Arc2FaceTeacher(**kwargs)
elif teacher_type == "unet_ensemble":
# unet, extra_unet_dirpaths and unet_weights are passed in kwargs.
# Even if we distill from unet_ensemble, we still need to load arc2face for generating
# arc2face embeddings.
# The first (optional) ctor param of UNetEnsembleTeacher is an instantiated unet,
# in our case, the ddpm unet. Ideally we should reuse it to save GPU RAM.
# However, since the __call__ method of the ddpm unet takes different formats of params,
# for simplicity, we still use the diffusers unet.
# unet_teacher is put on CPU first, then moved to GPU when DDPM is moved to GPU.
return UNetEnsembleTeacher(device=device, **kwargs)
elif teacher_type == "consistentID":
return ConsistentIDTeacher(**kwargs)
elif teacher_type == "simple_unet":
return SimpleUNetTeacher(**kwargs)
# Since we've dereferenced the list if it has only one element,
# this holding implies the list has more than one element. Therefore it's UNetEnsembleTeacher.
elif isinstance(teacher_type, (tuple, list, ListConfig)):
# teacher_type is a list of teacher types. So it's UNetEnsembleTeacher.
return UNetEnsembleTeacher(unet_types=teacher_type, device=device, **kwargs)
else:
raise NotImplementedError(f"Teacher type {teacher_type} not implemented.")
class UNetTeacher(pl.LightningModule):
def __init__(self, **kwargs):
super().__init__()
self.name = None
# self.unet will be initialized in the child class.
self.unet = None
self.p_uses_cfg = kwargs.get("p_uses_cfg", 0)
# self.cfg_scale will be randomly sampled from cfg_scale_range.
self.cfg_scale_range = kwargs.get("cfg_scale_range", [1.3, 2])
# Initialize cfg_scale to 1. It will be randomly sampled during forward pass.
self.cfg_scale = 1
if self.p_uses_cfg > 0:
print(f"Using CFG with probability {self.p_uses_cfg} and scale range {self.cfg_scale_range}.")
else:
print(f"Never using CFG.")
# Passing in ddpm_model to use its q_sample and predict_start_from_noise methods.
# We don't implement the two functions here, because they involve a few tensors
# to be initialized, which will unnecessarily complicate the code.
# noise: the initial noise for the first iteration.
# t: the initial t. We will sample additional (num_denoising_steps - 1) smaller t.
# uses_same_t: when sampling t, use the same t for all instances.
def forward(self, ddpm_model, x_start, noise, t, teacher_context,
num_denoising_steps=1, uses_same_t=False):
assert num_denoising_steps <= 10
if self.p_uses_cfg > 0:
self.uses_cfg = np.random.rand() < self.p_uses_cfg
if self.uses_cfg:
# Randomly sample a cfg_scale from cfg_scale_range.
self.cfg_scale = np.random.uniform(*self.cfg_scale_range)
if self.cfg_scale == 1:
self.uses_cfg = False
if self.uses_cfg:
print(f"Teacher samples CFG scale {self.cfg_scale:.1f}.")
else:
self.cfg_scale = 1
print("Teacher does not use CFG.")
# If p_uses_cfg > 0, we always pass both pos_context and neg_context to the teacher.
# But the neg_context is only used when self.uses_cfg is True and cfg_scale > 1.
# So we manually split the teacher_context into pos_context and neg_context, and only keep pos_context.
if self.name == 'unet_ensemble':
teacher_pos_contexts = []
# teacher_context is a list of teacher contexts.
for teacher_context_i in teacher_context:
pos_context, neg_context = torch.chunk(teacher_context_i, 2, dim=0)
if pos_context.shape[0] != x_start.shape[0]:
breakpoint()
teacher_pos_contexts.append(pos_context)
teacher_context = teacher_pos_contexts
else:
pos_context, neg_context = torch.chunk(teacher_context, 2, dim=0)
if pos_context.shape[0] != x_start.shape[0]:
breakpoint()
teacher_context = pos_context
else:
# p_uses_cfg = 0. Never use CFG.
self.uses_cfg = False
# In this case, the student only passes pos_context to the teacher,
# so no need to split teacher_context into pos_context and neg_context.
# self.cfg_scale will be accessed by the student,
# so we need to make sure it is always set correctly,
# in case someday we want to switch from CFG to non-CFG during runtime.
self.cfg_scale = 1
if self.name == 'unet_ensemble':
# teacher_context is a list of teacher contexts.
for teacher_context_i in teacher_context:
if teacher_context_i.shape[0] != x_start.shape[0] * (1 + self.uses_cfg):
breakpoint()
else:
if teacher_context.shape[0] != x_start.shape[0] * (1 + self.uses_cfg):
breakpoint()
# Initially, x_starts only contains the original x_start.
x_starts = [ x_start ]
noises = [ noise ]
ts = [ t ]
noise_preds = []
with torch.autocast(device_type='cuda', dtype=torch.float16):
for i in range(num_denoising_steps):
x_start = x_starts[i]
t = ts[i]
noise = noises[i]
# sqrt_alphas_cumprod[t] * x_start + sqrt_one_minus_alphas_cumprod[t] * noise
x_noisy = ddpm_model.q_sample(x_start, t, noise)
if self.uses_cfg:
x_noisy2 = x_noisy.repeat(2, 1, 1, 1)
t2 = t.repeat(2)
else:
x_noisy2 = x_noisy
t2 = t
# If do_arc2face_distill, then pos_context is [BS=6, 21, 768].
noise_pred = self.unet(sample=x_noisy2, timestep=t2, encoder_hidden_states=teacher_context,
return_dict=False)[0]
if self.uses_cfg and self.cfg_scale > 1:
pos_noise_pred, neg_noise_pred = torch.chunk(noise_pred, 2, dim=0)
noise_pred = pos_noise_pred * self.cfg_scale - neg_noise_pred * (self.cfg_scale - 1)
# sqrt_recip_alphas_cumprod[t] * x_t - sqrt_recipm1_alphas_cumprod[t] * noise
pred_x0 = ddpm_model.predict_start_from_noise(x_noisy, t, noise_pred)
noise_preds.append(noise_pred)
# The predicted x0 is used as the x_start for the next denoising step.
x_starts.append(pred_x0)
# Sample an earlier timestep for the next denoising step.
if i < num_denoising_steps - 1:
# NOTE: rand_like() samples from U(0, 1), not like randn_like().
relative_ts = torch.rand_like(t.float())
# Make sure at the middle step (i = sqrt(num_denoising_steps - 1), the timestep
# is between 50% and 70% of the current timestep. So if num_denoising_steps = 5,
# we take timesteps within [0.5^0.66, 0.7^0.66] = [0.63, 0.79] of the current timestep.
# If num_denoising_steps = 4, we take timesteps within [0.5^0.72, 0.7^0.72] = [0.61, 0.77]
# of the current timestep.
t_lb = t * np.power(0.5, np.power(num_denoising_steps - 1, -0.3))
t_ub = t * np.power(0.7, np.power(num_denoising_steps - 1, -0.3))
earlier_timesteps = (t_ub - t_lb) * relative_ts + t_lb
earlier_timesteps = earlier_timesteps.long()
if uses_same_t:
# If uses_same_t, we use the same earlier_timesteps for all instances.
earlier_timesteps = earlier_timesteps[0].repeat(x_start.shape[0])
# earlier_timesteps = ts[i+1] < ts[i].
ts.append(earlier_timesteps)
noise = torch.randn_like(pred_x0)
noises.append(noise)
return noise_preds, x_starts, noises, ts
class Arc2FaceTeacher(UNetTeacher):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.name = "arc2face"
self.unet = UNet2DConditionModel.from_pretrained(
#"runwayml/stable-diffusion-v1-5", subfolder="unet"
'models/arc2face', subfolder="arc2face", torch_dtype=torch.float16
)
# Disable CFG. Even if p_uses_cfg > 0, the randomly drawn cfg_scale is still 1,
# so the CFG is effectively disabled.
self.cfg_scale_range = [1, 1]
class UNetEnsembleTeacher(UNetTeacher):
# unet_weights are not model weights, but scalar weights for individual unets.
def __init__(self, unets, unet_types, extra_unet_dirpaths, unet_weights=None, device='cuda', **kwargs):
super().__init__(**kwargs)
self.name = "unet_ensemble"
self.unet = UNetEnsemble(unets, unet_types, extra_unet_dirpaths, unet_weights, device)
class ConsistentIDTeacher(UNetTeacher):
def __init__(self, base_model_path="models/sd15-dste8-vae.safetensors", **kwargs):
super().__init__(**kwargs)
self.name = "consistentID"
### Load base model
# In contrast to Arc2FaceTeacher or UNetEnsembleTeacher, ConsistentIDPipeline is not a torch.nn.Module.
# We couldn't initialize the ConsistentIDPipeline to CPU first and wait it to be automatically moved to GPU.
# Instead, we have to initialize it to GPU directly.
pipe = create_consistentid_pipeline(base_model_path)
# Compatible with the UNetTeacher interface.
self.unet = pipe.unet
# Release VAE and text_encoder to save memory. UNet is still needed for denoising
# (the unet is implemented in diffusers in fp16, so probably faster than the LDM unet).
pipe.release_components(["vae", "text_encoder"])
# We use the default cfg_scale_range=[1.3, 2] for SimpleUNetTeacher.
# Note p_uses_cfg=0.5 will also be passed in in kwargs.
class SimpleUNetTeacher(UNetTeacher):
def __init__(self, unet_dirpath='models/ensemble/sd15-unet',
torch_dtype=torch.float16, **kwargs):
super().__init__(**kwargs)
self.name = "simple_unet"
self.unet = UNet2DConditionModel.from_pretrained(
unet_dirpath, torch_dtype=torch_dtype
)
|