File size: 10,243 Bytes
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import imageio
import numpy as np
from typing import Union
import cv2

import torch
import torchvision
import torch.distributed as dist

from safetensors import safe_open
from tqdm import tqdm
from einops import rearrange
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora


def zero_rank_print(s):
    if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
from typing import List
import PIL
def export_to_video(
    video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
) -> str:
    # if output_video_path is None:
    #     output_video_path = tempfile.NamedTemporaryFile(suffix=".webm").name
    
    if isinstance(video_frames[0], PIL.Image.Image):
        video_frames = [np.array(frame) for frame in video_frames]

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    # fourcc = cv2.VideoWriter_fourcc(*'VP90')
    h, w, c = video_frames[0].shape
    video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))
    for i in range(len(video_frames)):
        img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
        video_writer.write(img)

    return output_video_path

def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=9):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)
    os.makedirs(os.path.dirname(path), exist_ok=True)
    # export_to_video(outputs, output_video_path=path, fps=fps)

    imageio.mimsave(path, outputs, fps=fps)


# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context


def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample


def get_noise_pred_single(latents, t, context, unet):
    noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
    return noise_pred


@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent


@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
    return ddim_latents

def load_weights(
    animation_pipeline,
    # motion module
    motion_module_path         = "",
    motion_module_lora_configs = [],
    # domain adapter
    adapter_lora_path          = "",
    adapter_lora_scale         = 1.0,
    # image layers
    dreambooth_model_path      = "",
    lora_model_path            = "",
    lora_alpha                 = 0.8,
):
    # motion module
    unet_state_dict = {}
    if motion_module_path != "":
        print(f"load motion module from {motion_module_path}")
        motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
        motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict
        unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name})
        unet_state_dict.pop("animatediff_config", "")
    
    missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
    print("motion_module missing:",len(missing))
    print("motion_module unexpe:",len(unexpected))
    assert len(unexpected) == 0
    del unet_state_dict

    # base model
    # if dreambooth_model_path != "":
    #     print(f"load dreambooth model from {dreambooth_model_path}")
    #     # if dreambooth_model_path.endswith(".safetensors"):
    #     #     dreambooth_state_dict = {}
    #     #     with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
    #     #         for key in f.keys():
    #     #             dreambooth_state_dict[key] = f.get_tensor(key)
    #     # elif dreambooth_model_path.endswith(".ckpt"):
    #     #     dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
            
    #     # # 1. vae
    #     # converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
    #     # animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
    #     # # 2. unet
    #     # converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
    #     # animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
    #     # # 3. text_model
    #     # animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
    #     # del dreambooth_state_dict
    #     dreambooth_state_dict = {}
    #     with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
    #         for key in f.keys():
    #             dreambooth_state_dict[key] = f.get_tensor(key)
                        
    #         converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
    #         # print(vae)
    #         #vae ->to_q,to_k,to_v
    #         # print(converted_vae_checkpoint)
    #         convert_vae_keys = list(converted_vae_checkpoint.keys())
    #         for key in convert_vae_keys:
    #             if "encoder.mid_block.attentions" in key or "decoder.mid_block.attentions" in  key:
    #                 new_key = None
    #                 if "key" in key:
    #                     new_key = key.replace("key","to_k")
    #                 elif "query" in key:
    #                     new_key = key.replace("query","to_q")
    #                 elif "value" in key:
    #                     new_key = key.replace("value","to_v")
    #                 elif "proj_attn" in key:
    #                     new_key = key.replace("proj_attn","to_out.0")
    #                 if new_key:
    #                     converted_vae_checkpoint[new_key] = converted_vae_checkpoint.pop(key)

    #         animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)

    #         converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
    #         animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)

    #         animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
    #     del dreambooth_state_dict
    # lora layers
    if lora_model_path != "":
        print(f"load lora model from {lora_model_path}")
        assert lora_model_path.endswith(".safetensors")
        lora_state_dict = {}
        with safe_open(lora_model_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                lora_state_dict[key] = f.get_tensor(key)
                
        animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
        del lora_state_dict

    # domain adapter lora
    if adapter_lora_path != "":
        print(f"load domain lora from {adapter_lora_path}")
        domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu")
        domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict
        domain_lora_state_dict.pop("animatediff_config", "")

        animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale)

    # motion module lora
    for motion_module_lora_config in motion_module_lora_configs:
        path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
        print(f"load motion LoRA from {path}")
        motion_lora_state_dict = torch.load(path, map_location="cpu")
        motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict
        motion_lora_state_dict.pop("animatediff_config", "")

        animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha)

    return animation_pipeline