File size: 6,283 Bytes
870be69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from langchain.tools.retriever import create_retriever_tool
from typing import Annotated, Literal, Sequence, TypedDict
from typing import Annotated, Sequence, TypedDict
from langchain_core.messages import BaseMessage
from langgraph.graph.message import add_messages
from langchain import hub
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from langgraph.prebuilt import tools_condition

from aimakerspace.vectordatabase import VectorDatabase



retriever_tool = create_retriever_tool(
    retriever,
    "retrieve_blog_posts",
    "Search and return information about the responsible and ethical use of AI along with the development of policies and practices to protect civil rights and promote democratic values in the building, deployment, and government of automated systems.",
)

tools = [retriever_tool]




class AgentState(TypedDict):
    # The add_messages function defines how an update should be processed
    # Default is to replace. add_messages says "append"
    messages: Annotated[Sequence[BaseMessage], add_messages]




### Edges


def grade_documents(state) -> Literal["generate", "rewrite"]:
    """
    Determines whether the retrieved documents are relevant to the question.

    Args:
        state (messages): The current state

    Returns:
        str: A decision for whether the documents are relevant or not
    """

    # Data model
    class grade(BaseModel):
        """Binary score for relevance check."""

        binary_score: str = Field(description="Relevance score 'yes' or 'no'")

    # LLM
    model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)

    # LLM with tool and validation
    llm_with_tool = model.with_structured_output(grade)

    # Prompt
    prompt = PromptTemplate(
        template="""You are a grader assessing relevance of a retrieved document to a user question. \n 
        Here is the retrieved document: \n\n {context} \n\n
        Here is the user question: {question} \n
        If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
        Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""",
        input_variables=["context", "question"],
    )

    # Chain
    chain = prompt | llm_with_tool

    messages = state["messages"]
    last_message = messages[-1]

    question = messages[0].content
    docs = last_message.content

    scored_result = chain.invoke({"question": question, "context": docs})

    score = scored_result.binary_score

    if score == "yes":
        print("---DECISION: DOCS RELEVANT---")
        return "generate"

    else:
        print("---DECISION: DOCS NOT RELEVANT---")
        print(score)
        return "rewrite"

### Nodes


def agent(state):
    """
    Invokes the agent model to generate a response based on the current state. Given
    the question, it will decide to retrieve using the retriever tool, or simply end.

    Args:
        state (messages): The current state

    Returns:
        dict: The updated state with the agent response appended to messages
    """
    print("---CALL AGENT---")
    messages = state["messages"]
    model = ChatOpenAI(temperature=0, streaming=True, model="gpt-4o-mini")
    model = model.bind_tools(tools)
    response = model.invoke(messages)
    # We return a list, because this will get added to the existing list
    return {"messages": [response]}


def rewrite(state):
    """
    Transform the query to produce a better question.

    Args:
        state (messages): The current state

    Returns:
        dict: The updated state with re-phrased question
    """

    print("---TRANSFORM QUERY---")
    messages = state["messages"]
    question = messages[0].content

    msg = [
        HumanMessage(
            content=f""" \n 
    Look at the input and try to reason about the underlying semantic intent / meaning. \n 
    Here is the initial question:
    \n ------- \n
    {question} 
    \n ------- \n
    Formulate an improved question: """,
        )
    ]

    # Grader
    model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)
    response = model.invoke(msg)
    return {"messages": [response]}


def generate(state):
    """
    Generate answer

    Args:
        state (messages): The current state

    Returns:
         dict: The updated state with re-phrased question
    """
    print("---GENERATE---")
    messages = state["messages"]
    question = messages[0].content
    last_message = messages[-1]

    docs = last_message.content

    # Prompt
    prompt = hub.pull("rlm/rag-prompt")

    # LLM
    llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0, streaming=True)

    # Post-processing
    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)

    # Chain
    rag_chain = prompt | llm | StrOutputParser()

    # Run
    response = rag_chain.invoke({"context": docs, "question": question})
    return {"messages": [response]}

from langgraph.graph import END, StateGraph, START
from langgraph.prebuilt import ToolNode

# Define a new graph
workflow = StateGraph(AgentState)

# Define the nodes we will cycle between
workflow.add_node("agent", agent)  # agent
retrieve = ToolNode([retriever_tool])
workflow.add_node("retrieve", retrieve)  # retrieval
workflow.add_node("rewrite", rewrite)  # Re-writing the question
workflow.add_node(
    "generate", generate
)  # Generating a response after we know the documents are relevant
# Call agent node to decide to retrieve or not
workflow.add_edge(START, "agent")

# Decide whether to retrieve
workflow.add_conditional_edges(
    "agent",
    # Assess agent decision
    tools_condition,
    {
        # Translate the condition outputs to nodes in our graph
        "tools": "retrieve",
        END: END,
    },
)

# Edges taken after the `action` node is called.
workflow.add_conditional_edges(
    "retrieve",
    # Assess agent decision
    grade_documents,
)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")

# Compile
graph = workflow.compile()