Spaces:
Running
Running
File size: 3,286 Bytes
b76a3bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import datetime
from typing import List, Tuple, Dict, Any
# Constants used in the app
PREFIX = """Current Date: {timestamp}
Purpose: {purpose}
System: You are an advanced AI assistant specialized in data processing and summarization.
"""
COMPRESS_DATA_PROMPT = """You are processing data for summarization and analysis.
Task Context:
- Direction: {direction}
- Knowledge: {knowledge}
Data to Process:
{history}
Instructions:
1. Analyze and summarize the data while preserving key information
2. Maintain original meaning and important details
3. Output should be concise yet comprehensive
4. Format as plain text with clear section headers
5. Include all critical data points and references
Output Format:
[Summary]
- Key points
- Important details
- Relevant references
[Analysis]
- Insights
- Patterns
- Conclusions
"""
COMPRESS_DATA_PROMPT_SMALL = """You are processing data chunks for summarization.
Task Context:
- Direction: {direction}
Current Data Chunk:
{history}
Instructions:
1. Extract key information from this chunk
2. Format as bullet points
3. Keep concise but preserve meaning
4. Focus on most relevant content
5. Include source references if available
Output Format:
- Point 1
- Point 2
- ...
"""
LOG_PROMPT = """=== PROMPT ===
{content}
"""
LOG_RESPONSE = """=== RESPONSE ===
{content}
"""
def run_gpt(
prompt_template: str,
stop_tokens: List[str],
max_tokens: int,
seed: int,
**prompt_kwargs: Any
) -> str:
"""Run GPT model with given parameters.
Args:
prompt_template: Template string for the prompt
stop_tokens: List of stop sequences
max_tokens: Maximum tokens to generate
seed: Random seed
**prompt_kwargs: Additional formatting arguments
Returns:
Generated text response
"""
# This would normally interface with the actual model
# For now returning a mock implementation
return "Mock response for testing purposes"
def compress_data(
c: int,
instruct: str,
history: str
) -> List[str]:
"""Compress data into smaller chunks.
Args:
c: Count of data points
instruct: Instruction for compression
history: Data to compress
Returns:
List of compressed data chunks
"""
# Mock implementation
return ["Compressed data chunk 1", "Compressed data chunk 2"]
def compress_data_og(
c: int,
instruct: str,
history: str
) -> str:
"""Original version of data compression.
Args:
c: Count of data points
instruct: Instruction for compression
history: Data to compress
Returns:
Compressed data as single string
"""
# Mock implementation
return "Compressed data output"
def save_memory(
purpose: str,
history: str
) -> List[Dict[str, Any]]:
"""Save processed data to memory format.
Args:
purpose: Purpose of the processing
history: Data to process
Returns:
List of memory dictionaries
"""
# Mock implementation
return [{
"keywords": ["sample", "data"],
"title": "Sample Entry",
"description": "Sample description",
"content": "Sample content",
"url": "https://example.com"
}]
|