Spaces:
Sleeping
Sleeping
File size: 9,991 Bytes
118329d 130ded5 118329d 130ded5 118329d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
from gensim.models import LdaModel
from gensim.corpora import Dictionary
from textblob import TextBlob
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import networkx as nx
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
import plotly.graph_objects as go
from collections import Counter
import warnings
warnings.filterwarnings("ignore")
# Set up logging
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Function to fetch HTML content from GitHub issue pages
def fetch_issue_data(username, repository, start_page, end_page):
issues_data = []
for page in range(start_page, end_page + 1):
url = f"https://github.com/{username}/{repository}/issues?page={page}"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
issue_elements = soup.find_all('div', class_='flex-shrink-0')
for issue_element in issue_elements:
issue_link = issue_element.find('a', class_='Link--primary')['href']
issue_url = f"https://github.com{issue_link}"
issue_data = fetch_issue_details(issue_url)
issues_data.append(issue_data)
return issues_data
# Function to fetch details of a specific issue
def fetch_issue_details(issue_url):
response = requests.get(issue_url)
soup = BeautifulSoup(response.content, 'html.parser')
issue_title = soup.find('h1', class_='gh-header-title').text.strip()
issue_body = soup.find('div', class_='markdown-body').text.strip()
issue_created_at = soup.find('relative-time')['datetime']
issue_closed_at = soup.find('relative-time', class_='no-wrap')
if issue_closed_at:
issue_closed_at = issue_closed_at['datetime']
else:
issue_closed_at = None
issue_author = soup.find('a', class_='author').text.strip()
issue_assignee = soup.find('a', class_='Link--muted')
if issue_assignee:
issue_assignee = issue_assignee.text.strip()
else:
issue_assignee = None
return {
'title': issue_title,
'body': issue_body,
'created_at': issue_created_at,
'closed_at': issue_closed_at,
'author': issue_author,
'assignee': issue_assignee
}
# Function to clean and structure the data
def clean_and_structure_data(issues_data):
df = pd.DataFrame(issues_data)
df['created_at'] = pd.to_datetime(df['created_at'])
df['closed_at'] = pd.to_datetime(df['closed_at'])
df['resolution_time'] = (df['closed_at'] - df['created_at']).dt.days
df['resolution_time'] = df['resolution_time'].fillna(-1)
df['is_closed'] = (df['closed_at'].notna()).astype(int)
return df
# Function for exploratory data analysis (EDA)
def perform_eda(df):
# Descriptive statistics
print("Descriptive Statistics:")
print(df.describe())
# Visualizations
plt.figure(figsize=(10, 6))
sns.histplot(df['resolution_time'], kde=True)
plt.title('Distribution of Issue Resolution Time')
plt.xlabel('Resolution Time (Days)')
plt.ylabel('Frequency')
plt.show()
# Trend analysis
df['created_at_month'] = df['created_at'].dt.month
plt.figure(figsize=(10, 6))
sns.lineplot(x='created_at_month', y='resolution_time', data=df)
plt.title('Trend of Issue Resolution Time Over Months')
plt.xlabel('Month')
plt.ylabel('Resolution Time (Days)')
plt.show()
# Top Authors and Assignees
top_authors = df['author'].value_counts().nlargest(10)
top_assignees = df['assignee'].value_counts().nlargest(10)
print("\nTop 10 Authors:")
print(top_authors)
print("\nTop 10 Assignees:")
print(top_assignees)
# Function for text analysis using NLP
def analyze_text_content(df):
# Text preprocessing
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
df['processed_body'] = df['body'].apply(lambda text: ' '.join([lemmatizer.lemmatize(word) for word in word_tokenize(text) if word.lower() not in stop_words]))
# Topic modeling
dictionary = Dictionary([word_tokenize(text) for text in df['processed_body']])
corpus = [dictionary.doc2bow(word_tokenize(text)) for text in df['processed_body']]
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary)
print("Top 5 Topics:")
for topic in lda_model.print_topics(num_words=5):
print(topic)
# Sentiment analysis
analyzer = SentimentIntensityAnalyzer()
df['sentiment'] = df['body'].apply(lambda text: analyzer.polarity_scores(text)['compound'])
print("Sentiment Analysis:")
print(df['sentiment'].describe())
# Word Cloud for Common Words
from wordcloud import WordCloud
all_words = ' '.join([text for text in df['processed_body']])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_words)
plt.figure(figsize=(10, 6), facecolor=None)
plt.imshow(wordcloud)
plt.axis("off")
plt.tight_layout(pad=0)
plt.show()
# Function to create a network graph of issues, authors, and assignees
def create_network_graph(df):
graph = nx.Graph()
for index, row in df.iterrows():
graph.add_node(row['title'], type='issue')
graph.add_node(row['author'], type='author')
if row['assignee']:
graph.add_node(row['assignee'], type='assignee')
graph.add_edge(row['title'], row['author'])
if row['assignee']:
graph.add_edge(row['title'], row['assignee'])
# Interactive Network Graph with Plotly
pos = nx.spring_layout(graph, k=0.5)
edge_x = []
edge_y = []
for edge in graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.append([x0, x1, None])
edge_y.append([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode='markers',
marker=dict(
color=[],
size=10,
line=dict(width=2, color='black')
),
text=[],
hoverinfo='text'
)
# Set node colors based on type
node_colors = []
for node in graph.nodes():
if graph.nodes[node]['type'] == 'issue':
node_colors.append('red')
elif graph.nodes[node]['type'] == 'author':
node_colors.append('blue')
else:
node_colors.append('green')
# Set node labels
node_labels = []
for node in graph.nodes():
node_labels.append(node)
node_trace.marker.color = node_colors
node_trace.text = node_labels
# Create the figure
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title="GitHub Issue Network Graph",
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
)
)
fig.show()
# Function to build a predictive model for issue resolution time
def build_predictive_model(df):
# Feature engineering
df['created_at_day'] = df['created_at'].dt.day
df['created_at_weekday'] = df['created_at'].dt.weekday
df['created_at_hour'] = df['created_at'].dt.hour
df['author_encoded'] = df['author'].astype('category').cat.codes
df['assignee_encoded'] = df['assignee'].astype('category').cat.codes
# Select features and target variable
features = ['created_at_day', 'created_at_weekday', 'created_at_hour', 'author_encoded', 'assignee_encoded', 'sentiment']
target = 'resolution_time'
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=42)
# Create a pipeline for feature scaling and model training
pipeline = Pipeline([
('scaler', StandardScaler()),
('model', RandomForestClassifier(random_state=42))
])
# Train the model
pipeline.fit(X_train, y_train)
# Evaluate the model
y_pred = pipeline.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print(classification_report(y_test, y_pred))
# Make predictions on new data
# ...
# Main function
if __name__ == "__main__":
# Replace with your GitHub username and repository name
username = "miagiii"
repository = "miagiii"
# Fetch issue data from GitHub
issues_data = fetch_issue_data(username, repository, 1, 10) # Fetch issues from pages 1 to 10
# Clean and structure the data
df = clean_and_structure_data(issues_data)
# Perform exploratory data analysis (EDA)
perform_eda(df)
# Analyze text content using NLP
analyze_text_content(df)
# Create a network graph of issues, authors, and assignees
create_network_graph(df)
# Build a predictive model for issue resolution time
build_predictive_model(df) |