Spaces:
Running
Running
File size: 14,149 Bytes
675c9d3 bd6c875 3dfa6ba 675c9d3 8f208cb b3ef9b6 461c0f4 31c3c58 675c9d3 8f208cb 9dad439 8f208cb 675c9d3 8f208cb 675c9d3 b3ef9b6 bd6c875 b3ef9b6 bd6c875 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 647ecd3 bd6c875 06d0c93 b3ef9b6 bd6c875 8f208cb 675c9d3 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 8f208cb b3ef9b6 8f208cb b3ef9b6 8f208cb 06d0c93 b3ef9b6 8f208cb f5516d4 b3ef9b6 06d0c93 b3ef9b6 bd6c875 b3ef9b6 bd6c875 06d0c93 b3ef9b6 8f208cb b3ef9b6 8f208cb bd6c875 8f208cb f5516d4 06d0c93 f5516d4 06d0c93 f5516d4 647ecd3 461c0f4 0d4d12c 461c0f4 b3ef9b6 06d0c93 675c9d3 b3ef9b6 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb b3ef9b6 06d0c93 b3ef9b6 461c0f4 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 b3ef9b6 06d0c93 647ecd3 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 8f208cb 0d4d12c 06d0c93 8f208cb 06d0c93 8f208cb 06d0c93 647ecd3 06d0c93 647ecd3 9e7fba3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient
from safe_search import safe_search
from i_search import google, i_search as i_s
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
import prompts
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
MODEL_NAME = "codellama/CodeLlama-7b-Python-hf" # Use CodeLlama for code-related tasks
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agents ---
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"DATA_SCIENCE",
"UI_UX_DESIGN",
]
# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History: {history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is: {history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is: {history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are: {test_results}
What do you want to know about the test results?
thought:
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
"""Formats the prompt for the LLM, including the message and recent history."""
prompt = " "
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST] {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_llm(
prompt_template: str,
stop_tokens: List[str],
purpose: str,
**prompt_kwargs: Dict,
) -> str:
"""Runs the LLM with the given prompt template, stop tokens, and purpose."""
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}")
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
resp = client.text_generation(
content,
max_new_tokens=MAX_TOKENS,
stop_sequences=stop_tokens,
temperature=TEMPERATURE,
top_p=TOP_P,
repetition_penalty=REPETITION_PENALTY,
)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp))
return resp.text # Access the text attribute of the response
def generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
"""Generates a response from the LLM based on the prompt, history, and other parameters."""
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=f"Generating response as {agent_name}",
safe_search=safe_search,
) + sys_prompt + "\n" + prompt
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
response = client.text_generation(
content,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=response))
return response.text
# --- Mixtral Integration ---
def mixtral_generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
"""Generates a response using the Mixtral model."""
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") # Use Mixtral model
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=f"Generating response as {agent_name}",
safe_search=safe_search,
) + sys_prompt + "\n" + prompt
inputs = tokenizer(content, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def main():
"""Main function to launch the Gradio interface."""
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=True,
likeable=True,
layout="panel",
)
message = gr.Textbox(
label="Enter your message", placeholder="Ask me anything!"
)
submit_button = gr.Button(value="Send")
with gr.Column(scale=1):
purpose = gr.Textbox(
label="Purpose", placeholder="What is the purpose of this interaction?"
)
agent_name = gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
)
sys_prompt = gr.Textbox(
label="System Prompt", max_lines=1, interactive=True
)
temperature = gr.Slider(
label="Temperature",
value=TEMPERATURE,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=MAX_TOKENS,
minimum=0,
maximum=1048 * 10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=TOP_P,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=REPETITION_PENALTY,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Tabs():
with gr.TabItem("Project Explorer"):
project_path = gr.Textbox(
label="Project Path", placeholder="/home/user/app/current_project"
)
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
with gr.TabItem("Code Editor"):
code_editor = gr.Code(label="Code Editor", language="python")
run_code_button = gr.Button(value="Run Code")
code_output = gr.Textbox(label="Code Output", lines=10)
with gr.TabItem("File Management"):
file_list = gr.Dropdown(
label="Select File", choices=[], interactive=True
)
file_content = gr.Textbox(label="File Content", lines=20)
save_file_button = gr.Button(value="Save File")
create_file_button = gr.Button(value="Create New File")
delete_file_button = gr.Button(value="Delete File")
history = gr.State([])
def chat(
purpose: str,
message: str,
agent_name: str,
sys_prompt: str,
temperature: float,
max_new_tokens: int,
top_p: float,
repetition_penalty: float,
history: List[Tuple[str, str]],
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
"""Handles the chat interaction, generating responses and updating history."""
prompt = format_prompt(message, history)
# Use Mixtral for generation
response = mixtral_generate(
prompt,
history,
agent_name,
sys_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
)
history.append((message, response))
return history, history
submit_button.click(
chat,
inputs=[
purpose,
message,
agent_name,
sys_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
history,
],
outputs=[chatbot, history],
)
def explore_project(project_path: str) -> str:
"""Explores the project directory and displays the file tree."""
try:
tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
return tree
except Exception as e:
return f"Error exploring project: {e}"
explore_button.click(
explore_project, inputs=[project_path], outputs=[project_output]
)
def run_code(code: str) -> str:
"""Executes the Python code in the code editor and returns the output."""
try:
exec_globals = {}
exec(code, exec_globals)
output = exec_globals.get("__builtins__", {}).get("print", print)
return str(output)
except Exception as e:
return f"Error running code: {e}"
run_code_button.click(
run_code, inputs=[code_editor], outputs=[code_output]
)
def load_file_list(project_path: str) -> List[str]:
"""Loads the list of files in the project directory."""
try:
return [
f
for f in os.listdir(project_path)
if os.path.isfile(os.path.join(project_path, f))
]
except Exception as e:
return [f"Error loading file list: {e}"]
def load_file_content(project_path: str, file_name: str) -> str:
"""Loads the content of the selected file."""
try:
with open(os.path.join(project_path, file_name), "r") as file:
return file.read()
except Exception as e:
return f"Error loading file content: {e}"
def save_file(project_path: str, file_name: str, content: str) -> str:
"""Saves the content to the selected file."""
try:
with open(os.path.join(project_path, file_name), "w") as file:
file.write(content)
return f"File {file_name} saved successfully."
except Exception as e:
return f"Error saving file: {e}"
def create_file(project_path: str, file_name: str) -> str:
"""Creates a new file in the project directory."""
try:
os.makedirs(os.path.dirname(os.path.join(project_path, file_name)), exist_ok=True) # Create directory if needed
open(os.path.join(project_path, file_name), "a").close()
return f"File {file_name} created successfully."
except Exception as e:
return f"Error creating file: {e}"
def delete_file(project_path: str, file_name: str) -> str:
"""Deletes the selected file from the project directory."""
try:
os.remove(os.path.join(project_path, file_name))
return f"File {file_name} deleted successfully."
except Exception as e:
return f"Error deleting file: {e}"
project_path.change(
load_file_list, inputs=[project_path], outputs=[file_list]
)
file_list.change(
load_file_content, inputs=[project_path, file_list], outputs=[file_content]
)
save_file_button.click(
save_file, inputs=[project_path, file_list, file_content], outputs=[gr.Textbox()]
)
create_file_button.click(
create_file,
inputs=[project_path, gr.Textbox(label="New File Name")],
outputs=[gr.Textbox()],
)
delete_file_button.click(
delete_file, inputs=[project_path, file_list], outputs=[gr.Textbox()]
)
demo.launch()
if __name__ == "__main__":
main() |