File size: 14,149 Bytes
675c9d3
 
 
bd6c875
 
 
3dfa6ba
675c9d3
8f208cb
b3ef9b6
 
461c0f4
31c3c58
 
675c9d3
 
8f208cb
 
 
 
 
 
9dad439
8f208cb
675c9d3
 
 
8f208cb
 
675c9d3
 
 
b3ef9b6
 
 
 
 
 
 
 
 
bd6c875
 
 
 
b3ef9b6
bd6c875
 
 
 
 
 
 
b3ef9b6
 
06d0c93
b3ef9b6
 
 
06d0c93
b3ef9b6
06d0c93
b3ef9b6
06d0c93
b3ef9b6
 
06d0c93
b3ef9b6
06d0c93
b3ef9b6
 
06d0c93
b3ef9b6
06d0c93
b3ef9b6
647ecd3
bd6c875
 
06d0c93
b3ef9b6
bd6c875
8f208cb
 
675c9d3
 
06d0c93
b3ef9b6
 
 
 
06d0c93
b3ef9b6
06d0c93
b3ef9b6
8f208cb
b3ef9b6
8f208cb
b3ef9b6
 
 
 
8f208cb
 
06d0c93
 
 
 
 
 
 
 
b3ef9b6
8f208cb
f5516d4
b3ef9b6
06d0c93
b3ef9b6
bd6c875
 
b3ef9b6
bd6c875
 
 
 
 
 
06d0c93
b3ef9b6
8f208cb
 
b3ef9b6
8f208cb
bd6c875
8f208cb
 
f5516d4
06d0c93
f5516d4
06d0c93
 
 
 
f5516d4
 
 
647ecd3
461c0f4
 
 
 
 
 
 
 
 
 
 
 
0d4d12c
 
461c0f4
 
 
 
 
 
 
 
 
 
 
b3ef9b6
06d0c93
675c9d3
b3ef9b6
8f208cb
 
 
06d0c93
 
 
 
 
 
 
 
 
 
8f208cb
 
06d0c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f208cb
 
06d0c93
 
 
8f208cb
 
 
 
 
 
 
06d0c93
 
 
8f208cb
 
 
 
 
b3ef9b6
06d0c93
 
 
 
 
 
 
 
 
 
 
 
b3ef9b6
461c0f4
 
06d0c93
 
 
 
 
 
 
 
 
b3ef9b6
 
 
06d0c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ef9b6
 
06d0c93
b3ef9b6
 
 
 
 
 
06d0c93
 
 
647ecd3
8f208cb
06d0c93
8f208cb
 
 
06d0c93
8f208cb
 
 
 
06d0c93
 
 
8f208cb
 
06d0c93
8f208cb
06d0c93
 
 
 
 
8f208cb
 
 
 
06d0c93
8f208cb
06d0c93
8f208cb
 
 
 
 
06d0c93
8f208cb
06d0c93
8f208cb
 
 
 
 
 
06d0c93
8f208cb
0d4d12c
06d0c93
8f208cb
 
 
 
 
06d0c93
8f208cb
 
 
 
 
 
06d0c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647ecd3
 
06d0c93
647ecd3
9e7fba3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient
from safe_search import safe_search
from i_search import google, i_search as i_s
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
import prompts

# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
MODEL_NAME = "codellama/CodeLlama-7b-Python-hf"  # Use CodeLlama for code-related tasks
API_KEY = os.getenv("HUGGINGFACE_API_KEY")

# --- Logging Setup ---
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)

# --- Agents ---
agents = [
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV",
    "DATA_SCIENCE",
    "UI_UX_DESIGN",
]

# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History: {history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is: {history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is: {history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are: {test_results}
What do you want to know about the test results?
thought:
"""

# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
    """Formats the prompt for the LLM, including the message and recent history."""
    prompt = " "
    for user_prompt, bot_response in history[-max_history_turns:]:
        prompt += f"[INST] {user_prompt} [/INST] {bot_response} "
    prompt += f"[INST] {message} [/INST]"
    return prompt


def run_llm(
    prompt_template: str,
    stop_tokens: List[str],
    purpose: str,
    **prompt_kwargs: Dict,
) -> str:
    """Runs the LLM with the given prompt template, stop tokens, and purpose."""
    seed = random.randint(1, 1111111111111111)
    logging.info(f"Seed: {seed}")
    content = PREFIX.format(
        date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        purpose=purpose,
        safe_search=safe_search,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        logging.info(LOG_PROMPT.format(content=content))
    client = InferenceClient(model=MODEL_NAME, token=API_KEY)
    resp = client.text_generation(
        content,
        max_new_tokens=MAX_TOKENS,
        stop_sequences=stop_tokens,
        temperature=TEMPERATURE,
        top_p=TOP_P,
        repetition_penalty=REPETITION_PENALTY,
    )
    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp=resp))
    return resp.text  # Access the text attribute of the response


def generate(
    prompt: str,
    history: List[Tuple[str, str]],
    agent_name: str = agents[0],
    sys_prompt: str = "",
    temperature: float = TEMPERATURE,
    max_new_tokens: int = MAX_TOKENS,
    top_p: float = TOP_P,
    repetition_penalty: float = REPETITION_PENALTY,
) -> str:
    """Generates a response from the LLM based on the prompt, history, and other parameters."""
    content = PREFIX.format(
        date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        purpose=f"Generating response as {agent_name}",
        safe_search=safe_search,
    ) + sys_prompt + "\n" + prompt
    if VERBOSE:
        logging.info(LOG_PROMPT.format(content=content))
    client = InferenceClient(model=MODEL_NAME, token=API_KEY)
    response = client.text_generation(
        content,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
    )
    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp=response))
    return response.text

# --- Mixtral Integration ---
def mixtral_generate(
    prompt: str,
    history: List[Tuple[str, str]],
    agent_name: str = agents[0],
    sys_prompt: str = "",
    temperature: float = TEMPERATURE,
    max_new_tokens: int = MAX_TOKENS,
    top_p: float = TOP_P,
    repetition_penalty: float = REPETITION_PENALTY,
) -> str:
    """Generates a response using the Mixtral model."""
    tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")  # Use Mixtral model
    model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")

    content = PREFIX.format(
        date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        purpose=f"Generating response as {agent_name}",
        safe_search=safe_search,
    ) + sys_prompt + "\n" + prompt

    inputs = tokenizer(content, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

def main():
    """Main function to launch the Gradio interface."""
    with gr.Blocks() as demo:
        gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
        gr.Markdown("### Your AI-Powered Development Companion")
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    show_label=False,
                    show_share_button=False,
                    show_copy_button=True,
                    likeable=True,
                    layout="panel",
                )
                message = gr.Textbox(
                    label="Enter your message", placeholder="Ask me anything!"
                )
                submit_button = gr.Button(value="Send")
            with gr.Column(scale=1):
                purpose = gr.Textbox(
                    label="Purpose", placeholder="What is the purpose of this interaction?"
                )
                agent_name = gr.Dropdown(
                    label="Agents",
                    choices=[s for s in agents],
                    value=agents[0],
                    interactive=True,
                )
                sys_prompt = gr.Textbox(
                    label="System Prompt", max_lines=1, interactive=True
                )
                temperature = gr.Slider(
                    label="Temperature",
                    value=TEMPERATURE,
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    interactive=True,
                    info="Higher values produce more diverse outputs",
                )
                max_new_tokens = gr.Slider(
                    label="Max new tokens",
                    value=MAX_TOKENS,
                    minimum=0,
                    maximum=1048 * 10,
                    step=64,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                )
                top_p = gr.Slider(
                    label="Top-p (nucleus sampling)",
                    value=TOP_P,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="Higher values sample more low-probability tokens",
                )
                repetition_penalty = gr.Slider(
                    label="Repetition penalty",
                    value=REPETITION_PENALTY,
                    minimum=1.0,
                    maximum=2.0,
                    step=0.05,
                    interactive=True,
                    info="Penalize repeated tokens",
                )
        with gr.Tabs():
            with gr.TabItem("Project Explorer"):
                project_path = gr.Textbox(
                    label="Project Path", placeholder="/home/user/app/current_project"
                )
                explore_button = gr.Button(value="Explore")
                project_output = gr.Textbox(label="File Tree", lines=20)
            with gr.TabItem("Code Editor"):
                code_editor = gr.Code(label="Code Editor", language="python")
                run_code_button = gr.Button(value="Run Code")
                code_output = gr.Textbox(label="Code Output", lines=10)
            with gr.TabItem("File Management"):
                file_list = gr.Dropdown(
                    label="Select File", choices=[], interactive=True
                )
                file_content = gr.Textbox(label="File Content", lines=20)
                save_file_button = gr.Button(value="Save File")
                create_file_button = gr.Button(value="Create New File")
                delete_file_button = gr.Button(value="Delete File")
        history = gr.State([])

        def chat(
            purpose: str,
            message: str,
            agent_name: str,
            sys_prompt: str,
            temperature: float,
            max_new_tokens: int,
            top_p: float,
            repetition_penalty: float,
            history: List[Tuple[str, str]],
        ) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
            """Handles the chat interaction, generating responses and updating history."""
            prompt = format_prompt(message, history)
            # Use Mixtral for generation
            response = mixtral_generate(
                prompt,
                history,
                agent_name,
                sys_prompt,
                temperature,
                max_new_tokens,
                top_p,
                repetition_penalty,
            )
            history.append((message, response))
            return history, history

        submit_button.click(
            chat,
            inputs=[
                purpose,
                message,
                agent_name,
                sys_prompt,
                temperature,
                max_new_tokens,
                top_p,
                repetition_penalty,
                history,
            ],
            outputs=[chatbot, history],
        )

        def explore_project(project_path: str) -> str:
            """Explores the project directory and displays the file tree."""
            try:
                tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
                return tree
            except Exception as e:
                return f"Error exploring project: {e}"

        explore_button.click(
            explore_project, inputs=[project_path], outputs=[project_output]
        )

        def run_code(code: str) -> str:
            """Executes the Python code in the code editor and returns the output."""
            try:
                exec_globals = {}
                exec(code, exec_globals)
                output = exec_globals.get("__builtins__", {}).get("print", print)
                return str(output)
            except Exception as e:
                return f"Error running code: {e}"

        run_code_button.click(
            run_code, inputs=[code_editor], outputs=[code_output]
        )

        def load_file_list(project_path: str) -> List[str]:
            """Loads the list of files in the project directory."""
            try:
                return [
                    f
                    for f in os.listdir(project_path)
                    if os.path.isfile(os.path.join(project_path, f))
                ]
            except Exception as e:
                return [f"Error loading file list: {e}"]

        def load_file_content(project_path: str, file_name: str) -> str:
            """Loads the content of the selected file."""
            try:
                with open(os.path.join(project_path, file_name), "r") as file:
                    return file.read()
            except Exception as e:
                return f"Error loading file content: {e}"

        def save_file(project_path: str, file_name: str, content: str) -> str:
            """Saves the content to the selected file."""
            try:
                with open(os.path.join(project_path, file_name), "w") as file:
                    file.write(content)
                return f"File {file_name} saved successfully."
            except Exception as e:
                return f"Error saving file: {e}"

        def create_file(project_path: str, file_name: str) -> str:
            """Creates a new file in the project directory."""
            try:
                os.makedirs(os.path.dirname(os.path.join(project_path, file_name)), exist_ok=True)  # Create directory if needed
                open(os.path.join(project_path, file_name), "a").close()
                return f"File {file_name} created successfully."
            except Exception as e:
                return f"Error creating file: {e}"

        def delete_file(project_path: str, file_name: str) -> str:
            """Deletes the selected file from the project directory."""
            try:
                os.remove(os.path.join(project_path, file_name))
                return f"File {file_name} deleted successfully."
            except Exception as e:
                return f"Error deleting file: {e}"

        project_path.change(
            load_file_list, inputs=[project_path], outputs=[file_list]
        )
        file_list.change(
            load_file_content, inputs=[project_path, file_list], outputs=[file_content]
        )
        save_file_button.click(
            save_file, inputs=[project_path, file_list, file_content], outputs=[gr.Textbox()]
        )
        create_file_button.click(
            create_file,
            inputs=[project_path, gr.Textbox(label="New File Name")],
            outputs=[gr.Textbox()],
        )
        delete_file_button.click(
            delete_file, inputs=[project_path, file_list], outputs=[gr.Textbox()]
        )
    demo.launch()


if __name__ == "__main__":
    main()