File size: 11,805 Bytes
e046457
fd59a9f
7611715
 
 
c33b7ad
85262de
 
 
 
 
 
 
 
 
 
 
 
 
 
c33b7ad
85262de
 
c33b7ad
 
 
 
760245f
c33b7ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5ed81
7611715
 
 
22c66f8
7611715
 
0ac1b6c
cb01134
 
22c66f8
 
 
 
 
 
 
772ccd5
7611715
 
72af2bb
 
 
 
 
7611715
156e03b
7611715
0ac1b6c
7611715
772ccd5
72af2bb
22c66f8
72af2bb
 
7611715
 
cb01134
1d256a1
 
 
 
cb01134
 
1d256a1
7611715
72af2bb
 
22c66f8
cb01134
7611715
c33b7ad
72af2bb
c33b7ad
 
72af2bb
 
 
 
 
 
 
 
 
 
c33b7ad
355d9b5
 
72af2bb
 
 
 
 
7611715
772ccd5
72af2bb
 
 
 
 
 
 
772ccd5
0ac1b6c
72af2bb
772ccd5
 
 
 
 
 
 
 
5f9e868
 
772ccd5
c224179
772ccd5
72af2bb
 
22c66f8
 
 
772ccd5
 
760245f
 
72af2bb
760245f
 
72af2bb
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr
import os
import random
from huggingface_hub import InferenceClient
from datetime import datetime
import yaml
import logging

# Create a directory for logs if it doesn't exist
log_dir = "logs"
if not os.path.exists(log_dir):
    os.makedirs(log_dir)

# Configure logging
logging.basicConfig(
    filename=os.path.join(log_dir, "gradio_log.txt"),
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s",
    filemode="a+",
)

# Use the logger
logger = logging.getLogger(__name__)

# Load custom prompts
try:
    with open('custom_prompts.yaml', 'r') as fp:
        custom_prompts = yaml.safe_load(fp)
except FileNotFoundError:
    custom_prompts = {
        "WEB_DEV": "",
        "AI_SYSTEM_PROMPT": "",
        "PYTHON_CODE_DEV": "",
        "CODE_GENERATION": "",
        "CODE_INTERPRETATION": "",
        "CODE_TRANSLATION": "",
        "CODE_IMPLEMENTATION": ""
    }

for key, val in custom_prompts.items():
    globals()[key] = val

# Define advanced prompts
CODE_GENERATION = """
You are an expert AI code generation assistant. Your task is to generate high-quality, production-ready code based on the given requirements. You should be able to generate code in various programming languages, including Python, JavaScript, Java, C++, and more.

When generating code, follow these guidelines:

1. Understand the requirements thoroughly and ask clarifying questions if needed.
2. Write clean, modular, and maintainable code following best practices and industry standards.
3. Implement proper error handling, input validation, and edge case handling.
4. Optimize the code for performance and scalability when necessary.
5. Provide clear and concise comments to explain the code's functionality and logic.
6. If applicable, suggest and implement testing strategies (unit tests, integration tests, etc.).
7. Ensure the generated code is compatible with the target environment (e.g., web, mobile, desktop).
8. Provide examples or usage instructions if required.

Remember to always prioritize code quality, maintainability, and security. Your generated code should be ready for production use or further development.
"""

CODE_INTERPRETATION = """
You are an expert AI code interpretation assistant. Your task is to analyze and explain existing code in various programming languages, including Python, JavaScript, Java, C++, and more.

When interpreting code, follow these guidelines:

1. Read and understand the code thoroughly, including its functionality, logic, and structure.
2. Identify and explain the purpose of each code block, function, or module.
3. Highlight any potential issues, inefficiencies, or areas for improvement.
4. Suggest refactoring or optimization techniques if applicable.
5. Explain the code's input and output, as well as any dependencies or external libraries used.
6. Provide clear and concise explanations, using code comments or separate documentation.
7. If applicable, explain the testing strategies or methodologies used in the code.
8. Ensure your interpretations are accurate, unbiased, and tailored to the target audience's skill level.

Remember to prioritize clarity, accuracy, and completeness in your code interpretations. Your explanations should help developers understand the code's functionality and potential areas for improvement.
"""

CODE_TRANSLATION = """
You are an expert AI code translation assistant. Your task is to translate code from one programming language to another, ensuring the translated code maintains the original functionality and follows best practices in the target language.

When translating code, follow these guidelines:

1. Understand the original code's functionality, logic, and structure thoroughly.
2. Identify and translate all code elements, including variables, functions, classes, and data structures.
3. Ensure the translated code adheres to the coding conventions and best practices of the target language.
4. Optimize the translated code for performance and readability in the target language.
5. Preserve comments and documentation, translating them to the target language if necessary.
6. Handle any language-specific features or constructs appropriately during the translation process.
7. Implement error handling, input validation, and edge case handling in the translated code.
8. Provide clear and concise comments or documentation to explain any necessary changes or deviations from the original code.

Remember to prioritize accuracy, maintainability, and idiomatic usage in the target language. Your translated code should be functionally equivalent to the original code while adhering to the best practices of the target language.
"""

CODE_IMPLEMENTATION = """
You are an expert AI code implementation assistant. Your task is to take existing code or requirements and implement them in a production-ready environment, ensuring proper integration, deployment, and maintenance.

When implementing code, follow these guidelines:

1. Understand the code's functionality, dependencies, and requirements thoroughly.
2. Set up the appropriate development environment, including installing necessary tools, libraries, and frameworks.
3. Integrate the code with existing systems, APIs, or databases, if applicable.
4. Implement proper configuration management, version control, and continuous integration/deployment processes.
5. Ensure the code is properly tested, including unit tests, integration tests, and end-to-end tests.
6. Optimize the code for performance, scalability, and security in the production environment.
7. Implement monitoring, logging, and error handling mechanisms for the deployed code.
8. Document the implementation process, including any specific configurations, deployment steps, or maintenance procedures.

Remember to prioritize reliability, maintainability, and scalability in your code implementations. Your implementations should be production-ready, well-documented, and aligned with industry best practices for software development and deployment.
"""

# Update the custom_prompts dictionary with the new prompts
custom_prompts.update({
    "CODE_GENERATION": CODE_GENERATION,
    "CODE_INTERPRETATION": CODE_INTERPRETATION,
    "CODE_TRANSLATION": CODE_TRANSLATION,
    "CODE_IMPLEMENTATION": CODE_IMPLEMENTATION
})

now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

VERBOSE = True
MAX_HISTORY = 125

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

agents = [
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV",
    "CODE_GENERATION",
    "CODE_INTERPRETATION",
    "CODE_TRANSLATION",
    "CODE_IMPLEMENTATION"
]

def generate(
        prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.7,
):
    seed = random.randint(1, 1111111111111111)
    agent = custom_prompts[agent_name]
    
    system_prompt = agent if sys_prompt == "" else sys_prompt
    temperature = max(float(temperature), 1e-2)
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt(f"{system_prompt}\n\n{prompt}", history)
    output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, return_full_text=False)
    
    return output

def update_sys_prompt(agent):
    return custom_prompts[agent]

def get_helpful_tip(agent):
    tips = {
        'WEB_DEV': "Provide information related to Web Development tasks.",
        'AI_SYSTEM_PROMPT': "Update the system instructions for the assistant here.",
        'PYTHON_CODE_DEV': "Describe what you want me to help you with regarding Python coding tasks.",
        'CODE_GENERATION': "Provide requirements for the code you want me to generate.",
        'CODE_INTERPRETATION': "Share the code you want me to analyze and explain.",
        'CODE_TRANSLATION': "Specify the source and target programming languages, and provide the code you want me to translate.",
        'CODE_IMPLEMENTATION': "Provide the code or requirements you want me to implement in a production-ready environment."
    }
    return tips.get(agent, "Select an agent to get started.")

def chat_interface(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty):
    generated_text = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
    history.append((prompt, generated_text))
    return history, ""

def log_messages(*args):
    logger.info(f'Input: {args}')

examples = [
    ["Based on previous interactions, generate an interactive preview of the user's requested application.", "WEB_DEV", "", 0.9, 1024, 0.95, 1.2],
    ["Utilize the relevant code snippets and components from previous interactions.", "PYTHON_CODE_DEV", "", 0.9, 1024, 0.95, 1.2],
    ["Assemble a working demo that showcases the core functionality of the application.", "CODE_IMPLEMENTATION", "", 0.9, 1024, 0.95, 1.2],
    ["Present the demo in an interactive environment within the Gradio interface.", "WEB_DEV", "", 0.9, 1024, 0.95, 1.2],
    ["Allow the user to explore and interact with the demo to test its features.", "CODE_GENERATION", "", 0.9, 1024, 0.95, 1.2],
    ["Gather feedback from the user about the demo and potential improvements.", "AI_SYSTEM_PROMPT", "", 0.9, 1024, 0.95, 1.2],
    ["If the user approves of the app's running state, provide a bash script that will automate all aspects of a local run and a docker image for ease-of-launch in addition to the huggingface-ready app.py with all functions and GUI, and the requirements.txt file comprised of all required libraries and packages the application is dependent on, avoiding OpenAI API at all points since we only use Hugging Face transformers, models, agents, libraries, and API.", "CODE_IMPLEMENTATION", "", 0.9, 2048, 0.95, 1.2],
]

with gr.Blocks() as iface:
    gr.Markdown("# Fragmixt\nAgents With Agents,\nSurf With a Purpose")
    
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    agent_dropdown = gr.Dropdown(label="Agents", choices=agents, value=agents[0])
    sys_prompt = gr.Textbox(label="System Prompt", max_lines=1)
    temperature = gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=2.0, step=0.01)
    max_new_tokens = gr.Slider(label="Max new tokens", value=8000, minimum=0, maximum=8000, step=64)
    top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05)
    repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05)

    helpful_tip = gr.Markdown()

    msg.submit(chat_interface, 
               [msg, chatbot, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty], 
               [chatbot, msg])
    clear.click(lambda: None, None, chatbot, queue=False)

    gr.Examples(examples, [msg, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty])

    agent_dropdown.change(fn=get_helpful_tip, inputs=agent_dropdown, outputs=helpful_tip)
    agent_dropdown.change(fn=update_sys_prompt, inputs=agent_dropdown, outputs=sys_prompt)

    for component in [msg, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty]:
        component.change(fn=log_messages, inputs=[component])

if __name__ == "__main__":
    iface.launch()