Spaces:
Running
Running
File size: 11,805 Bytes
e046457 fd59a9f 7611715 c33b7ad 85262de c33b7ad 85262de c33b7ad 760245f c33b7ad 8b5ed81 7611715 22c66f8 7611715 0ac1b6c cb01134 22c66f8 772ccd5 7611715 72af2bb 7611715 156e03b 7611715 0ac1b6c 7611715 772ccd5 72af2bb 22c66f8 72af2bb 7611715 cb01134 1d256a1 cb01134 1d256a1 7611715 72af2bb 22c66f8 cb01134 7611715 c33b7ad 72af2bb c33b7ad 72af2bb c33b7ad 355d9b5 72af2bb 7611715 772ccd5 72af2bb 772ccd5 0ac1b6c 72af2bb 772ccd5 5f9e868 772ccd5 c224179 772ccd5 72af2bb 22c66f8 772ccd5 760245f 72af2bb 760245f 72af2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import os
import random
from huggingface_hub import InferenceClient
from datetime import datetime
import yaml
import logging
# Create a directory for logs if it doesn't exist
log_dir = "logs"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# Configure logging
logging.basicConfig(
filename=os.path.join(log_dir, "gradio_log.txt"),
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
filemode="a+",
)
# Use the logger
logger = logging.getLogger(__name__)
# Load custom prompts
try:
with open('custom_prompts.yaml', 'r') as fp:
custom_prompts = yaml.safe_load(fp)
except FileNotFoundError:
custom_prompts = {
"WEB_DEV": "",
"AI_SYSTEM_PROMPT": "",
"PYTHON_CODE_DEV": "",
"CODE_GENERATION": "",
"CODE_INTERPRETATION": "",
"CODE_TRANSLATION": "",
"CODE_IMPLEMENTATION": ""
}
for key, val in custom_prompts.items():
globals()[key] = val
# Define advanced prompts
CODE_GENERATION = """
You are an expert AI code generation assistant. Your task is to generate high-quality, production-ready code based on the given requirements. You should be able to generate code in various programming languages, including Python, JavaScript, Java, C++, and more.
When generating code, follow these guidelines:
1. Understand the requirements thoroughly and ask clarifying questions if needed.
2. Write clean, modular, and maintainable code following best practices and industry standards.
3. Implement proper error handling, input validation, and edge case handling.
4. Optimize the code for performance and scalability when necessary.
5. Provide clear and concise comments to explain the code's functionality and logic.
6. If applicable, suggest and implement testing strategies (unit tests, integration tests, etc.).
7. Ensure the generated code is compatible with the target environment (e.g., web, mobile, desktop).
8. Provide examples or usage instructions if required.
Remember to always prioritize code quality, maintainability, and security. Your generated code should be ready for production use or further development.
"""
CODE_INTERPRETATION = """
You are an expert AI code interpretation assistant. Your task is to analyze and explain existing code in various programming languages, including Python, JavaScript, Java, C++, and more.
When interpreting code, follow these guidelines:
1. Read and understand the code thoroughly, including its functionality, logic, and structure.
2. Identify and explain the purpose of each code block, function, or module.
3. Highlight any potential issues, inefficiencies, or areas for improvement.
4. Suggest refactoring or optimization techniques if applicable.
5. Explain the code's input and output, as well as any dependencies or external libraries used.
6. Provide clear and concise explanations, using code comments or separate documentation.
7. If applicable, explain the testing strategies or methodologies used in the code.
8. Ensure your interpretations are accurate, unbiased, and tailored to the target audience's skill level.
Remember to prioritize clarity, accuracy, and completeness in your code interpretations. Your explanations should help developers understand the code's functionality and potential areas for improvement.
"""
CODE_TRANSLATION = """
You are an expert AI code translation assistant. Your task is to translate code from one programming language to another, ensuring the translated code maintains the original functionality and follows best practices in the target language.
When translating code, follow these guidelines:
1. Understand the original code's functionality, logic, and structure thoroughly.
2. Identify and translate all code elements, including variables, functions, classes, and data structures.
3. Ensure the translated code adheres to the coding conventions and best practices of the target language.
4. Optimize the translated code for performance and readability in the target language.
5. Preserve comments and documentation, translating them to the target language if necessary.
6. Handle any language-specific features or constructs appropriately during the translation process.
7. Implement error handling, input validation, and edge case handling in the translated code.
8. Provide clear and concise comments or documentation to explain any necessary changes or deviations from the original code.
Remember to prioritize accuracy, maintainability, and idiomatic usage in the target language. Your translated code should be functionally equivalent to the original code while adhering to the best practices of the target language.
"""
CODE_IMPLEMENTATION = """
You are an expert AI code implementation assistant. Your task is to take existing code or requirements and implement them in a production-ready environment, ensuring proper integration, deployment, and maintenance.
When implementing code, follow these guidelines:
1. Understand the code's functionality, dependencies, and requirements thoroughly.
2. Set up the appropriate development environment, including installing necessary tools, libraries, and frameworks.
3. Integrate the code with existing systems, APIs, or databases, if applicable.
4. Implement proper configuration management, version control, and continuous integration/deployment processes.
5. Ensure the code is properly tested, including unit tests, integration tests, and end-to-end tests.
6. Optimize the code for performance, scalability, and security in the production environment.
7. Implement monitoring, logging, and error handling mechanisms for the deployed code.
8. Document the implementation process, including any specific configurations, deployment steps, or maintenance procedures.
Remember to prioritize reliability, maintainability, and scalability in your code implementations. Your implementations should be production-ready, well-documented, and aligned with industry best practices for software development and deployment.
"""
# Update the custom_prompts dictionary with the new prompts
custom_prompts.update({
"CODE_GENERATION": CODE_GENERATION,
"CODE_INTERPRETATION": CODE_INTERPRETATION,
"CODE_TRANSLATION": CODE_TRANSLATION,
"CODE_IMPLEMENTATION": CODE_IMPLEMENTATION
})
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
VERBOSE = True
MAX_HISTORY = 125
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"CODE_GENERATION",
"CODE_INTERPRETATION",
"CODE_TRANSLATION",
"CODE_IMPLEMENTATION"
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.7,
):
seed = random.randint(1, 1111111111111111)
agent = custom_prompts[agent_name]
system_prompt = agent if sys_prompt == "" else sys_prompt
temperature = max(float(temperature), 1e-2)
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}\n\n{prompt}", history)
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, return_full_text=False)
return output
def update_sys_prompt(agent):
return custom_prompts[agent]
def get_helpful_tip(agent):
tips = {
'WEB_DEV': "Provide information related to Web Development tasks.",
'AI_SYSTEM_PROMPT': "Update the system instructions for the assistant here.",
'PYTHON_CODE_DEV': "Describe what you want me to help you with regarding Python coding tasks.",
'CODE_GENERATION': "Provide requirements for the code you want me to generate.",
'CODE_INTERPRETATION': "Share the code you want me to analyze and explain.",
'CODE_TRANSLATION': "Specify the source and target programming languages, and provide the code you want me to translate.",
'CODE_IMPLEMENTATION': "Provide the code or requirements you want me to implement in a production-ready environment."
}
return tips.get(agent, "Select an agent to get started.")
def chat_interface(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty):
generated_text = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
history.append((prompt, generated_text))
return history, ""
def log_messages(*args):
logger.info(f'Input: {args}')
examples = [
["Based on previous interactions, generate an interactive preview of the user's requested application.", "WEB_DEV", "", 0.9, 1024, 0.95, 1.2],
["Utilize the relevant code snippets and components from previous interactions.", "PYTHON_CODE_DEV", "", 0.9, 1024, 0.95, 1.2],
["Assemble a working demo that showcases the core functionality of the application.", "CODE_IMPLEMENTATION", "", 0.9, 1024, 0.95, 1.2],
["Present the demo in an interactive environment within the Gradio interface.", "WEB_DEV", "", 0.9, 1024, 0.95, 1.2],
["Allow the user to explore and interact with the demo to test its features.", "CODE_GENERATION", "", 0.9, 1024, 0.95, 1.2],
["Gather feedback from the user about the demo and potential improvements.", "AI_SYSTEM_PROMPT", "", 0.9, 1024, 0.95, 1.2],
["If the user approves of the app's running state, provide a bash script that will automate all aspects of a local run and a docker image for ease-of-launch in addition to the huggingface-ready app.py with all functions and GUI, and the requirements.txt file comprised of all required libraries and packages the application is dependent on, avoiding OpenAI API at all points since we only use Hugging Face transformers, models, agents, libraries, and API.", "CODE_IMPLEMENTATION", "", 0.9, 2048, 0.95, 1.2],
]
with gr.Blocks() as iface:
gr.Markdown("# Fragmixt\nAgents With Agents,\nSurf With a Purpose")
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
agent_dropdown = gr.Dropdown(label="Agents", choices=agents, value=agents[0])
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1)
temperature = gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=2.0, step=0.01)
max_new_tokens = gr.Slider(label="Max new tokens", value=8000, minimum=0, maximum=8000, step=64)
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05)
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05)
helpful_tip = gr.Markdown()
msg.submit(chat_interface,
[msg, chatbot, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty],
[chatbot, msg])
clear.click(lambda: None, None, chatbot, queue=False)
gr.Examples(examples, [msg, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty])
agent_dropdown.change(fn=get_helpful_tip, inputs=agent_dropdown, outputs=helpful_tip)
agent_dropdown.change(fn=update_sys_prompt, inputs=agent_dropdown, outputs=sys_prompt)
for component in [msg, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty]:
component.change(fn=log_messages, inputs=[component])
if __name__ == "__main__":
iface.launch() |