File size: 6,190 Bytes
9c9ed59
 
05e56df
b62cff3
9c9ed59
 
 
8055050
9c9ed59
550c01d
9c9ed59
550c01d
 
 
 
 
 
 
 
 
 
dc99f18
 
550c01d
dc99f18
550c01d
889f93a
0dbf789
550c01d
 
 
 
 
f03b3b4
550c01d
 
d212066
550c01d
d212066
550c01d
d212066
550c01d
d212066
550c01d
d212066
550c01d
d212066
dc99f18
d212066
550c01d
 
dc99f18
d212066
550c01d
 
d212066
550c01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbf789
9c9ed59
 
9cc5276
 
 
 
 
 
ca677a9
0dbf789
ca677a9
 
 
9c9ed59
 
 
 
 
 
 
 
 
4f3177e
9c9ed59
 
9bae30a
9c9ed59
4f3177e
9c9ed59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0b562
9cc5276
7d0b562
f791e50
7d0b562
1bf03c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03b3b4
1bf03c3
 
9c9ed59
fc05708
 
 
 
 
 
 
 
 
8055050
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from huggingface_hub import InferenceClient
import gradio as gr
import random
import prompts
client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt
agents =[
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV",
    "CODE_REVIEW_ASSISTANT",
    "CONTENT_WRITER_EDITOR",
    #"SOCIAL_MEDIA_MANAGER",
    #"MEME_GENERATOR",
    "QUESTION_GENERATOR",
    #"IMAGE_GENERATOR",
    "HUGGINGFACE_FILE_DEV",

]
def generate(
        prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    seed = random.randint(1,1111111111111111)


    agent=prompts.WEB_DEV
    if agent_name == "WEB_DEV":
      agent = prompts.WEB_DEV_SYSTEM_PROMPT
    if agent_name == "CODE_REVIEW_ASSISTANT":
      agent = prompts.CODE_REVIEW_ASSISTANT
    if agent_name == "CONTENT_WRITER_EDITOR":
      agent = prompts.CONTENT_WRITER_EDITOR
    if agent_name == "SOCIAL_MEDIA_MANAGER":
      agent = prompts.SOCIAL_MEDIA_MANAGER        
    if agent_name == "AI_SYSTEM_PROMPT":
      agent = prompts.AI_SYSTEM_PROMPT
    if agent_name == "PYTHON_CODE_DEV":
      agent = prompts.PYTHON_CODE_DEV        
    #if agent_name == "MEME_GENERATOR":
    #   agent = prompts.MEME_GENERATOR  
    if agent_name == "QUESTION_GENERATOR":
        agent = prompts.QUESTION_GENERATOR 
    #if agent_name == "IMAGE_GENERATOR":
    #   agent = prompts.IMAGE_GENERATOR      
    if agent_name == "HUGGINGFACE_FILE_DEV":
        agent = prompts.HUGGINGFACE_FILE_DEV          
    
    system_prompt=agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Dropdown(
        label="Agents",
        choices=[s for s in agents],
        value=agents[0],
        interactive=True,
        ),
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Max new tokens",
        value=1048*10,
        minimum=0,
        maximum=1048*10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),


]

examples=[
    ["Create a simple web application using Flask", agents[0], None, None, None, None, ],
    ["Generate a Python script to perform a linear regression analysis", agents[2], None, None, None, None, ],
    ["Create a Dockerfile for a Node.js application", agents[1], None, None, None, None, ],
    ["Write a shell script to automate the deployment of a web application to a server", agents[3], None, None, None, None, ],
    ["Generate a SQL query to retrieve the top 10 most popular products by sales", agents[4], None, None, None, None, ],
    ["Write a Python script to generate a random password with a given length and complexity", agents[2], None, None, None, None, ],
    ["Create a simple game in Unity using C#", agents[0], None, None, None, None, ],
    ["Generate a Java program to implement a binary search algorithm", agents[2], None, None, None, None, ],
    ["Write a shell script to monitor the CPU usage of a server", agents[1], None, None, None, None, ],
    ["Create a simple web application using React and Node.js", agents[0], None, None, None, None, ],
    ["Generate a Python script to perform a sentiment analysis on a given text", agents[2], None, None, None, None, ],
    ["Write a shell script to automate the backup of a MySQL database", agents[1], None, None, None, None, ],
    ["Create a simple game in Unreal Engine using C++", agents[3], None, None, None, None, ],
    ["Generate a Java program to implement a bubble sort algorithm", agents[2], None, None, None, None, ],
    ["Write a shell script to monitor the memory usage of a server", agents[1], None, None, None, None, ],
    ["Create a simple web application using Angular and Node.js", agents[0], None, None, None, None, ],
    ["Generate a Python script to perform a text classification on a given dataset", agents[2], None, None, None, None, ],
    ["Write a shell script to automate the installation of a software package on a server", agents[1], None, None, None, None, ],
    ["Create a simple game in Godot using GDScript", agents[3], None, None, None, None, ],
    ["Generate a Java program to implement a merge sort algorithm", agents[2], None, None, None, None, ],
    ["Write a shell script to automate the cleanup of temporary files on a server", agents[1], None, None, None, None, ],
]


gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="Mixtral 46.7B",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)