Spaces:
Runtime error
Runtime error
File size: 1,867 Bytes
70656ba 70e9a38 7a9e4e2 e98fe6a 70e9a38 7a9e4e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import os
import gradio as gr
import transformers
import blackboxai
# Set up the Hugging Face Transformers library
model_name = "bert-base-uncased"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModel.from_pretrained(model_name)
# Set up the Blackbox.ai API client
blackbox_client.Client.from_api_key(os.environ["BLACKBOX_API_KEY"])
# Define the user interface for the app
def run_model(input_text):
# Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")
# Run the model on the inputs
outputs = model(**inputs)
# Extract the last hidden state from the model outputs
last_hidden_states = outputs.last_hidden_state
# Return the last hidden state as a string
return last_hidden_states.detach().numpy().tolist()
iface = gr.Interface(fn=run_model, inputs="text", outputs="text")
# Define the GitHub bot functions
def get_issues():
# Code to get issues from the GitHub repository
pass
def fix_issue(issue):
# Code to fix the issue on the local fork
pass
def push_fix():
# Code to push the fix to the GitHub repository
pass
def comment_on_issue(issue, result):
# Code to comment on the issue with the result
pass
# Define the main function to run the app and the bot
def main():
# Run the app
iface.launch()
# Get the issues from the GitHub repository
issues = get_issues()
# Loop through the issues
for issue in issues:
# Fix the issue on the local fork
fixed_issue = fix_issue(issue)
# Run the model on the fixed issue
result = run_model(fixed_issue)
# Push the fix to the GitHub repository
push_fix()
# Comment on the issue with the result
comment_on_issue(issue, result)
# Run the main function
if __name__ == "__main__":
main() |