Spaces:
Running
Running
File size: 12,198 Bytes
a98a37e 4ebd6c7 1115ab9 1a022bd 1115ab9 1a022bd 308bc46 1a022bd 1115ab9 1a022bd c6d665e cb052d2 1a022bd bcb4a93 1a022bd 308bc46 1a022bd 1115ab9 1a022bd 1115ab9 1a022bd 308bc46 1a022bd 1115ab9 1a022bd 1115ab9 1a022bd 714ba23 1a022bd 1115ab9 1a022bd 1115ab9 1a022bd 1115ab9 1a022bd cb052d2 1a022bd 308bc46 1a022bd bcb4a93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import InferenceClient, cached_download, Repository, HfApi
from IPython.display import display, HTML
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
DEFAULT_PROJECT_PATH = "./my-hf-project" # Default project directory
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Global Variables ---
current_model = None # Store the currently loaded model
repo = None # Store the Hugging Face Repository object
model_descriptions = {} # Store model descriptions
# --- Constants ---
PREFIX = """Date: {date_time_str}
Purpose: {purpose}
Agent Name: {agent_name}
"""
LOG_PROMPT = """Prompt:
{content}
"""
LOG_RESPONSE = """Response:
{resp}
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
prompt = ""
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"Human: {user_prompt}\nAssistant: {bot_response}\n"
prompt += f"Human: {message}\nAssistant:"
return prompt
def generate_response(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = "Generic Agent",
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
global current_model
if current_model is None:
return "Error: Please load a model first."
date_time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
full_prompt = PREFIX.format(
date_time_str=date_time_str,
purpose=sys_prompt,
agent_name=agent_name
) + format_prompt(prompt, history)
if VERBOSE:
logging.info(LOG_PROMPT.format(content=full_prompt))
response = current_model(
full_prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True
)[0]['generated_text']
assistant_response = response.split("Assistant:")[-1].strip()
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=assistant_response))
return assistant_response
def load_hf_model(model_name: str):
"""Loads a language model and fetches its description."""
global current_model, model_descriptions
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
current_model = pipeline(
"text-generation",
model=model_name,
tokenizer=tokenizer,
model_kwargs={"load_in_8bit": True}
)
# Fetch and store the model description
api = HfApi()
model_info = api.model_info(model_name)
model_descriptions[model_name] = model_info.pipeline_tag
return f"Successfully loaded model: {model_name}"
except Exception as e:
return f"Error loading model: {str(e)}"
def execute_command(command: str, project_path: str = None) -> str:
"""Executes a shell command and returns the output."""
try:
if project_path:
process = subprocess.Popen(command, shell=True, cwd=project_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
else:
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
if error:
return f"Error: {error.decode('utf-8')}"
return output.decode("utf-8")
except Exception as e:
return f"Error executing command: {str(e)}"
def create_hf_project(project_name: str, project_path: str = DEFAULT_PROJECT_PATH):
"""Creates a new Hugging Face project."""
global repo
try:
if os.path.exists(project_path):
return f"Error: Directory '{project_path}' already exists!"
# Create the repository
repo = Repository(local_dir=project_path, clone_from=None)
repo.git_init()
# Add basic files (optional, you can customize this)
with open(os.path.join(project_path, "README.md"), "w") as f:
f.write(f"# {project_name}\n\nA new Hugging Face project.")
# Stage all changes
repo.git_add(pattern="*")
repo.git_commit(commit_message="Initial commit")
return f"Hugging Face project '{project_name}' created successfully at '{project_path}'"
except Exception as e:
return f"Error creating Hugging Face project: {str(e)}"
def list_project_files(project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Lists files in the project directory."""
try:
files = os.listdir(project_path)
if not files:
return "Project directory is empty."
return "\n".join(files)
except Exception as e:
return f"Error listing project files: {str(e)}"
def read_file_content(file_path: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Reads and returns the content of a file in the project."""
try:
full_path = os.path.join(project_path, file_path)
with open(full_path, "r") as f:
content = f.read()
return content
except Exception as e:
return f"Error reading file: {str(e)}"
def write_to_file(file_path: str, content: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Writes content to a file in the project."""
try:
full_path = os.path.join(project_path, file_path)
with open(full_path, "w") as f:
f.write(content)
return f"Successfully wrote to '{file_path}'"
except Exception as e:
return f"Error writing to file: {str(e)}"
def preview_project(project_path: str = DEFAULT_PROJECT_PATH):
"""Provides a preview of the project, if applicable."""
# Assuming a simple HTML preview for now
try:
index_html_path = os.path.join(project_path, "index.html")
if os.path.exists(index_html_path):
with open(index_html_path, "r") as f:
html_content = f.read()
display(HTML(html_content))
return "Previewing 'index.html'"
else:
return "No 'index.html' found for preview."
except Exception as e:
return f"Error previewing project: {str(e)}"
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: Your Hugging Face No-Code App Builder")
# --- Model Selection ---
with gr.Tab("Model"):
# --- Model Dropdown with Categories ---
model_categories = gr.Dropdown(
choices=["Text Generation", "Text Summarization", "Code Generation", "Translation", "Question Answering"],
label="Model Category",
value="Text Generation"
)
model_name = gr.Dropdown(
choices=[], # Initially empty, will be populated based on category
label="Hugging Face Model Name",
)
load_button = gr.Button("Load Model")
load_output = gr.Textbox(label="Output")
model_description = gr.Markdown(label="Model Description")
# --- Function to populate model names based on category ---
def update_model_dropdown(category):
models = []
api = HfApi()
for model in api.list_models():
if model.pipeline_tag == category:
models.append(model.modelId)
return gr.Dropdown.update(choices=models)
# --- Event handler for category dropdown ---
model_categories.change(
fn=update_model_dropdown,
inputs=model_categories,
outputs=model_name,
)
# --- Event handler to display model description ---
def display_model_description(model_name):
global model_descriptions
if model_name in model_descriptions:
return model_descriptions[model_name]
else:
return "Model description not available."
model_name.change(
fn=display_model_description,
inputs=model_name,
outputs=model_description,
)
load_button.click(load_hf_model, inputs=model_name, outputs=load_output)
# --- Chat Interface ---
with gr.Tab("Chat"):
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True)
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=["Generic Agent"], value="Generic Agent", interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
submit_button = gr.Button(value="Send")
history = gr.State([])
def run_chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
response = generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
history.append((message, response))
return history, history
submit_button.click(run_chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
# --- Project Management ---
with gr.Tab("Project"):
project_name = gr.Textbox(label="Project Name", placeholder="MyHuggingFaceApp")
create_project_button = gr.Button("Create Hugging Face Project")
project_output = gr.Textbox(label="Output", lines=5)
file_content = gr.Code(label="File Content", language="python", lines=20)
file_path = gr.Textbox(label="File Path (relative to project)", placeholder="src/main.py")
read_button = gr.Button("Read File")
write_button = gr.Button("Write to File")
command_input = gr.Textbox(label="Terminal Command", placeholder="pip install -r requirements.txt")
command_output = gr.Textbox(label="Command Output", lines=5)
run_command_button = gr.Button("Run Command")
preview_button = gr.Button("Preview Project")
create_project_button.click(create_hf_project, inputs=[project_name], outputs=project_output)
read_button.click(read_file_content, inputs=file_path, outputs=file_content)
write_button.click(write_to_file, inputs=[file_path, file_content], outputs=project_output)
run_command_button.click(execute_command, inputs=command_input, outputs=command_output)
preview_button.click(preview_project, outputs=project_output)
if __name__ == "__main__":
main() |