File size: 13,895 Bytes
d754f21
a98a37e
 
86363d9
d754f21
b0944ea
 
 
 
 
 
 
 
 
9f232dd
b0944ea
 
 
 
 
 
 
 
9f232dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1203c
9f232dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097ecdb
9f232dd
 
 
 
 
8363049
9f232dd
 
 
 
8363049
b0944ea
 
 
 
 
 
 
 
9f232dd
 
 
f45aba3
b0944ea
 
2a5ea3c
b0944ea
2ee47e5
 
b0944ea
 
d754f21
8363049
f45aba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee47e5
 
 
 
 
 
f45aba3
2ee47e5
f45aba3
 
2ee47e5
 
 
 
 
 
f45aba3
2ee47e5
f45aba3
9f232dd
b0944ea
 
9f232dd
b0944ea
9f232dd
 
b0944ea
 
9f232dd
 
 
 
 
 
b0944ea
 
 
 
 
 
 
d4d66f6
f45aba3
 
d4d66f6
 
f45aba3
b0944ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d66f6
 
b0944ea
 
 
 
 
 
 
 
 
 
d4d66f6
f45aba3
 
 
 
 
 
 
 
 
d4d66f6
 
 
b0944ea
 
 
 
 
 
 
 
 
 
 
d4d66f6
b0944ea
 
 
 
 
 
 
 
 
 
 
 
 
f45aba3
b0944ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f232dd
 
 
f45aba3
 
 
 
 
 
 
 
 
 
9f232dd
 
f45aba3
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import streamlit as st
import os
import subprocess
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
import openai
import sys

# Set your OpenAI API key here
openai.api_key = "YOUR_OPENAI_API_KEY"

PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"

# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
    st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
    st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
    st.session_state.available_agents = []

class AIAgent:
    def __init__(self, name, description, skills):
        self.name = name
        self.description = description
        self.skills = skills

    def create_agent_prompt(self):
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}

I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
        return agent_prompt

    def autonomous_build(self, chat_history, workspace_projects):
        """
        Autonomous build logic that continues based on the state of chat history and workspace projects.
        """
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])

        next_step = "Based on the current state, the next logical step is to implement the main application logic."

        return summary, next_step

def save_agent_to_file(agent):
    """Saves the agent's prompt to a file."""
    if not os.path.exists(AGENT_DIRECTORY):
        os.makedirs(AGENT_DIRECTORY)
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
    with open(file_path, "w") as file:
        file.write(agent.create_agent_prompt())
    st.session_state.available_agents.append(agent.name)

def load_agent_prompt(agent_name):
    """Loads an agent prompt from a file."""
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
    if os.path.exists(file_path):
        with open(file_path, "r") as file:
            agent_prompt = file.read()
        return agent_prompt
    else:
        return None

def create_agent_from_text(name, text):
    skills = text.split('\n')
    agent = AIAgent(name, "AI agent created from text input.", skills)
    save_agent_to_file(agent)
    return agent.create_agent_prompt()

def chat_interface_with_agent(input_text, agent_name):
    agent_prompt = load_agent_prompt(agent_name)
    if agent_prompt is None:
        return f"Agent {agent_name} not found."

    model_name = "gpt2"
    try:
        model = AutoModelForCausalLM.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
    
    input_ids = tokenizer.encode(combined_input, return_tensors="pt")
    max_input_length = 900
    if input_ids.shape[1] > max_input_length:
        input_ids = input_ids[:, :max_input_length]

    outputs = model.generate(
        input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
        pad_token_id=tokenizer.eos_token_id  # Set pad_token_id to eos_token_id
    )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

def workspace_interface(project_name):
    if not os.path.exists(PROJECT_ROOT):
        os.makedirs(PROJECT_ROOT)
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(project_path):
        os.makedirs(project_path)
        st.session_state.workspace_projects[project_name] = {"files": []}
        return f"Project {project_name} created successfully."
    else:
        return f"Project {project_name} already exists."

def add_code_to_workspace(project_name, code, file_name):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if os.path.exists(project_path):
        file_path = os.path.join(project_path, file_name)
        with open(file_path, "w") as file:
            file.write(code)
        st.session_state.workspace_projects[project_name]["files"].append(file_name)
        return f"Code added to {file_name} in project {project_name} successfully."
    else:
        return f"Project {project_name} does not exist."

def terminal_interface(command, project_name=None):
    if project_name:
        project_path = os.path.join(PROJECT_ROOT, project_name)
        if not os.path.exists(project_path):
            return f"Project {project_name} does not exist."
        result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
    else:
        result = subprocess.run(command, shell=True, capture_output=True, text=True)
    
    if result.returncode == 0:
        return result.stdout
    else:
        return result.stderr

def code_editor_interface(code):
    try:
        formatted_code = black.format_str(code, mode=black.FileMode())
    except black.NothingChanged:
        formatted_code = code

    result = StringIO()
    sys.stdout = result
    sys.stderr = result

    (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
    sys.stdout = sys.__stdout__
    sys.stderr = sys.__stderr__

    lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()

    return formatted_code, lint_message

def summarize_text(text):
    summarizer = pipeline("summarization")
    summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
    return summary[0]['summary_text']

def sentiment_analysis(text):
    analyzer = pipeline("sentiment-analysis")
    sentiment = analyzer(text)
    return sentiment[0]

def translate_code(code, source_language, target_language):
    prompt = f"Translate this code from {source_language} to {target_language}:\n\n{code}"
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert software developer."},
            {"role": "user", "content": prompt}
        ]
    )
    return response.choices[0].message['content'].strip()

def generate_code(code_idea):
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert software developer."},
            {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
        ]
    )
    return response.choices[0].message['content'].strip()

st.title("AI Agent Creator")

st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])

if app_mode == "AI Agent Creator":
    st.header("Create an AI Agent from Text")

    st.subheader("From Text")
    agent_name = st.text_input("Enter agent name:")
    text_input = st.text_area("Enter skills (one per line):")
    if st.button("Create Agent"):
        agent_prompt = create_agent_from_text(agent_name, text_input)
        st.success(f"Agent '{agent_name}' created and saved successfully.")
        st.session_state.available_agents.append(agent_name)

elif app_mode == "Tool Box":
    st.header("AI-Powered Tools")

    st.subheader("Chat with CodeCraft")
    chat_input = st.text_area("Enter your message:")
    if st.button("Send"):
        if chat_input.startswith("@"):
            agent_name = chat_input.split(" ")[0][1:]
            chat_input = " ".join(chat_input.split(" ")[1:])
            chat_response = chat_interface_with_agent(chat_input, agent_name)
        else:
            chat_response = "Chat interface function not provided."
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    st.subheader("Terminal")
    terminal_input = st.text_input("Enter a command:")
    if st.button("Run"):
        terminal_output = terminal_interface(terminal_input)
        st.session_state.terminal_history.append((terminal_input, terminal_output))
        st.code(terminal_output, language="bash")

    st.subheader("Code Editor")
    code_editor = st.text_area("Write your code:", height=300)
    if st.button("Format & Lint"):
        formatted_code, lint_message = code_editor_interface(code_editor)
        st.code(formatted_code, language="python")
        st.info(lint_message)

    st.subheader("Summarize Text")
    text_to_summarize = st.text_area("Enter text to summarize:")
    if st.button("Summarize"):
        summary = summarize_text(text_to_summarize)
        st.write(f"Summary: {summary}")

    st.subheader("Sentiment Analysis")
    sentiment_text = st.text_area("Enter text for sentiment analysis:")
    if st.button("Analyze Sentiment"):
        sentiment = sentiment_analysis(sentiment_text)
        st.write(f"Sentiment: {sentiment}")

    st.subheader("Translate Code")
    code_to_translate = st.text_area("Enter code to translate:")
    source_language = st.text_input("Enter source language (e.g. 'Python'):")
    target_language = st.text_input("Enter target language (e.g. 'JavaScript'):")
    if st.button("Translate Code"):
        translated_code = translate_code(code_to_translate, source_language, target_language)
        st.code(translated_code, language=target_language.lower())

    st.subheader("Code Generation")
    code_idea = st.text_input("Enter your code idea:")
    if st.button("Generate Code"):
        generated_code = generate_code(code_idea)
        st.code(generated_code, language="python")

    st.subheader("Preset Commands")
    preset_commands = {
        "Create a new project": "create_project('project_name')",
        "Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
        "Run terminal command": "terminal_interface('command', 'project_name')",
        "Generate code": "generate_code('code_idea')",
        "Summarize text": "summarize_text('text')",
        "Analyze sentiment": "sentiment_analysis('text')",
        "Translate code": "translate_code('code', 'source_language', 'target_language')",
    }
    for command_name, command in preset_commands.items():
        st.write(f"{command_name}: `{command}`")

elif app_mode == "Workspace Chat App":
    st.header("Workspace Chat App")

    st.subheader("Create a New Project")
    project_name = st.text_input("Enter project name:")
    if st.button("Create Project"):
        workspace_status = workspace_interface(project_name)
        st.success(workspace_status)

    st.subheader("Add Code to Workspace")
    code_to_add = st.text_area("Enter code to add to workspace:")
    file_name = st.text_input("Enter file name (e.g. 'app.py'):")
    if st.button("Add Code"):
        add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
        st.success(add_code_status)

    st.subheader("Terminal (Workspace Context)")
    terminal_input = st.text_input("Enter a command within the workspace:")
    if st.button("Run Command"):
        terminal_output = terminal_interface(terminal_input, project_name)
        st.code(terminal_output, language="bash")

    st.subheader("Chat with CodeCraft for Guidance")
    chat_input = st.text_area("Enter your message for guidance:")
    if st.button("Get Guidance"):
        chat_response = "Chat interface function not provided."
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    st.subheader("Chat History")
    for user_input, response in st.session_state.chat_history:
        st.write(f"User: {user_input}")
        st.write(f"CodeCraft: {response}")

    st.subheader("Terminal History")
    for command, output in st.session_state.terminal_history:
        st.write(f"Command: {command}")
        st.code(output, language="bash")

    st.subheader("Workspace Projects")
    for project, details in st.session_state.workspace_projects.items():
        st.write(f"Project: {project}")
        for file in details['files']:
            st.write(f"  - {file}")

    st.subheader("Chat with AI Agents")
    if st.session_state.available_agents:
        selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
        agent_chat_input = st.text_area("Enter your message for the agent:")
        if st.button("Send to Agent"):
            agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
            st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
            st.write(f"{selected_agent}: {agent_chat_response}")
    else:
        st.write("No agents available. Please create an agent first.")

    st.subheader("Automate Build Process")
    if st.button("Automate"):
        if st.session_state.available_agents:
            selected_agent = st.session_state.available_agents[0]
            agent = AIAgent(selected_agent, "", []) 
            summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
            st.write("Autonomous Build Summary:")
            st.write(summary)
            st.write("Next Step:")
            st.write(next_step)
        else:
            st.write("No agents available. Please create an agent first.")