Spaces:
Build error
Build error
File size: 3,709 Bytes
208c5b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import torch
import torchvision.transforms as T
from torchvision.models.detection import maskrcnn_resnet50_fpn
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
from google_drive_downloader import GoogleDriveDownloader as gdd
# Download and load the RAG model and tokenizer
gdd.download_file_from_google_drive(file_id='your_model_file_id', dest_path='./model.pt')
gdd.download_file_from_google_drive(file_id='your_tokenizer_file_id', dest_path='./tokenizer')
tokenizer = RagTokenizer.from_pretrained('./tokenizer')
retriever = RagRetriever.from_pretrained('./model.pt')
model = RagSequenceForGeneration.from_pretrained('./model.pt')
# Load the Mask R-CNN model
model_rcnn = maskrcnn_resnet50_fpn(pretrained=True)
model_rcnn.eval()
# Define the class labels for COCO dataset
class_labels = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A',
'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
# Define the image-to-text object segmentation function
def image_to_text_segmentation(image):
# Convert the image to the expected format (RGB and tensor)
image = T.ToTensor()(image)
image = image.unsqueeze(0)
# Run the image through the Mask R-CNN model
with torch.no_grad():
predictions = model_rcnn(image)
# Extract the bounding boxes, labels, and masks from the predictions
boxes = predictions[0]['boxes'].tolist()
labels = [class_labels[i] for i in predictions[0]['labels'].tolist()]
masks = predictions[0]['masks'].squeeze().detach().cpu().numpy()
# Generate the segmented text for each object
segmented_text = []
for i in range(len(boxes)):
mask = masks[i]
object_text = ""
for j in range(mask.shape[0]):
for k in range(mask.shape[1]):
if mask[j][k]:
object_text += labels[i] + " "
segmented_text.append(object_text.strip())
return segmented_text
# Define the Gradio interface
input_image = gr.inputs.Image(label="Input Image")
input_text = gr.inputs.Textbox(label="Question")
output_text = gr.outputs.Textbox(label="Generated Text")
title = "RAG Text Generation and Object Segmentation"
description = "Generate text based on the given question using RAG model and perform object segmentation on the input image."
gr.Interface(
fn=generate_text,
inputs=input_text,
outputs=output_text,
title=title,
description=description,
examples=[
["What is the capital of France?"],
["Who is the president of the United States?"],
]
).launch()
gr.Interface(
fn=image_to_text_segmentation,
inputs=input_image,
outputs=output_text,
title="Image-to-Text Object Segmentation",
description="Segment objects in the image and generate corresponding text.",
).launch() |