File size: 2,900 Bytes
0f66d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36baacc
 
0f66d47
1ce3950
0f66d47
 
b513fcd
0f66d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import streamlit as st
from streamlit_chat import message
from langchain import OpenAI
from langchain.chains import LLMChain, ConversationChain
from langchain.chains.conversation.memory import (ConversationBufferMemory, ConversationSummaryMemory, ConversationBufferWindowMemory)

if 'conversation' not in st.session_state:
    st.session_state['conversation'] =None
if 'messages' not in st.session_state:
    st.session_state['messages'] =[]
if 'API_Key' not in st.session_state:
    st.session_state['API_Key'] =''
    
# Setting page title and header
st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:")
st.markdown("<h1 style='text-align: center;'>💻 ChatterBot</h1>", unsafe_allow_html=True)
st.subheader("How Can I Help You Today? 🤖")

st.sidebar.title("😎🗝️")
st.session_state['API_Key']= st.sidebar.text_input("What's your API key?",type="password")
summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
st.sidebar.image('./chatbot.jpg',width=300, use_column_width=True)
if summarise_button:
    summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer)
    #summarise_placeholder.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer)


#import os
#os.environ["OPENAI_API_KEY"] = "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"


def getresponse(userInput, api_key):

    if st.session_state['conversation'] is None:
        
        llm = OpenAI(temperature=0, openai_api_key=api_key, model_name='text-davinci-003')  
        #we can also use 'gpt-3.5-turbo'
        st.session_state['conversation'] = ConversationChain(llm=llm, verbose=True, memory=ConversationBufferMemory())
    
    response = st.session_state['conversation'].predict(input=userInput)
    print(st.session_state['conversation'].memory.buffer)
    
    return response

response_container = st.container()
# Here we will have a container for user input text box
container = st.container()

with container:
    with st.form(key='my_form', clear_on_submit=True):
        user_input = st.text_area("Your question goes here:", key='input', height=100)
        submit_button = st.form_submit_button(label='Send')
        
        if submit_button:
            st.session_state['messages'].append(user_input)
            model_response=getresponse(user_input, st.session_state['API_Key'])
            st.session_state['messages'].append(model_response)
            
            with response_container:
                for i in range(len(st.session_state['messages'])):
                        if (i % 2) == 0:
                            message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user')
                        else:
                            message(st.session_state['messages'][i], key=str(i) + '_AI')