File size: 7,001 Bytes
f4b4235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747864d
 
 
 
 
 
 
 
 
f4b4235
 
993584d
 
747864d
 
993584d
 
 
 
 
 
 
 
 
 
747864d
 
 
 
f4b4235
b7adec7
7987763
 
 
 
 
 
 
 
 
 
 
 
 
b7adec7
747864d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7adec7
f4b4235
f221667
 
 
747864d
 
 
 
f221667
 
 
 
 
 
747864d
f221667
 
 
 
 
 
 
 
747864d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f221667
747864d
 
f221667
 
 
747864d
f221667
 
 
 
 
747864d
f221667
 
 
747864d
f221667
 
993584d
 
 
 
 
 
 
 
 
 
 
 
f4b4235
993584d
 
 
 
 
 
 
 
 
 
 
 
747864d
993584d
747864d
 
 
993584d
f221667
 
 
 
747864d
 
f221667
993584d
 
 
747864d
993584d
 
747864d
993584d
fd506d6
f4b4235
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import g4f
import gradio as gr
from g4f.Provider import (
    Ails,
    You,
    Bing,
    Yqcloud,
    Theb,
    Aichat,
    Bard,
    Vercel,
    Forefront,
    Lockchat,
    Liaobots,
    H2o,
    ChatgptLogin,
    DeepAi,
    GetGpt,
    AItianhu,
    EasyChat,
    Acytoo,
    DfeHub,
    AiService,
    BingHuan,
    Wewordle,
    ChatgptAi,
)
import os
import json
import pandas as pd
from langchain.tools.python.tool import PythonREPLTool
from langchain.agents.agent_toolkits import create_python_agent
from models_for_langchain.model import CustomLLM
from langchain.memory import ConversationBufferWindowMemory, ConversationTokenBufferMemory
from langchain import LLMChain, PromptTemplate
from langchain.prompts import (
    ChatPromptTemplate,
    PromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.agents.agent_types import AgentType
from langchain.tools import WikipediaQueryRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.tools import DuckDuckGoSearchRun

provider_dict = {
    'Ails': Ails,
    'You': You,
    'Bing': Bing,
    'Yqcloud': Yqcloud,
    'Theb': Theb,
    'Aichat': Aichat,
    'Bard': Bard,
    'Vercel': Vercel,
    'Forefront': Forefront,
    'Lockchat': Lockchat,
    'Liaobots': Liaobots,
    'H2o': H2o,
    'ChatgptLogin': ChatgptLogin,
    'DeepAi': DeepAi,
    'GetGpt': GetGpt,
    'AItianhu': AItianhu,
    'EasyChat': EasyChat,
    'Acytoo': Acytoo,
    'DfeHub': DfeHub,
    'AiService': AiService,
    'BingHuan': BingHuan,
    'Wewordle': Wewordle,
    'ChatgptAi': ChatgptAi,
}

available_dict = {
    'gpt-3.5-turbo':['Acytoo', 'AiService', 'Aichat', 'GetGpt', 'Wewordle'],
    'gpt-4':['ChatgptAi'],
    'falcon-7b':['H2o'],
    'falcon-13b':['H2o'],
    'llama-13b':['H2o']
}

def change_prompt_set(prompt_set_name):
    return gr.Dropdown.update(choices=list(prompt_set_list[prompt_set_name].keys()))

def change_model(model_name):
    new_choices = list(available_dict[model_name])
    return gr.Dropdown.update(choices=new_choices, value=new_choices[0])

def change_prompt(prompt_set_name, prompt_name):
    return gr.update(value=prompt_set_list[prompt_set_name][prompt_name])

def user(user_message, history):
    return gr.update(value="", interactive=False), history + [[user_message, None]]

def bot(message, history, model_name, provider_name, system_msg, agent):
    response = ''

    if len(system_msg)>3000:
        system_msg = system_msg[:2000] + system_msg[-1000:]

    global template, memory
    llm.model_name = model_name
    llm.provider_name = provider_name
    if agent == '系统提示':
        new_template = template.format(system_instruction=system_msg)
    elif agent == '维基百科':
        wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
        target = llm(f'用户的问题:```{message}```。为了回答用户的问题,你需要在维基百科上进行搜索,只有一次搜索的机会,请返回需要搜索的词汇,只需要返回一个英文词汇,不要加任何解释:')
        new_template = template.format(system_instruction=wikipedia.run(str(target)))
    elif agent == 'duckduckgo':
        search = DuckDuckGoSearchRun()
        target = llm(f'用户的问题:```{message}```。为了回答用户的问题,你需要在duckduckgo搜索引擎上进行搜索,只有一次搜索的机会,请返回需要搜索的内容,只需要返回纯英文的搜索语句,不要加任何解释:')     
        new_template = template.format(system_instruction=search.run(str(target))) 
    elif agent == 'python':
        py_agent = create_python_agent(
                llm,
                tool=PythonREPLTool(), # REPL,一种代码交互方式,类似jupyter,可以执行代码
                verbose=True,
                # agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION
                handle_parsing_errors=True, # 输出无法解析,返回给llm要求改正。
            )
        response = py_agent.run(message)
        return str(response)
    else:
        new_template = template.format(system_instruction=system_msg)
    prompt = PromptTemplate(
                        input_variables=["chat_history", "human_input"], template=new_template
                        )
    llm_chain = LLMChain(
                        llm=llm,
                        prompt=prompt,
                        verbose=True,
                        memory=memory,
                    )
    bot_msg = llm_chain.run(message)
    for c in bot_msg:
        response += c
    return response

def empty_chat():
    global memory
    memory = ConversationBufferWindowMemory(k=6, memory_key="chat_history")
    return None

prompt_set_list = {}
for prompt_file in os.listdir("prompt_set"):
    key = prompt_file
    if '.csv' in key:
        df = pd.read_csv("prompt_set/" + prompt_file)
        prompt_dict = dict(zip(df['act'], df['prompt']))
    else:
        with open("prompt_set/" + prompt_file, encoding='utf-8') as f:
            ds = json.load(f)
        prompt_dict = {item["act"]: item["prompt"] for item in ds}
    prompt_set_list[key] = prompt_dict

with gr.Blocks() as demo:
    llm = CustomLLM()

    template = """
    Chat with human based on following instructions:
    ```
    {system_instruction}
    ```
    The following is a conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
    {{chat_history}}
    Human: {{human_input}}
    Chatbot:"""

    memory = ConversationBufferWindowMemory(k=6, memory_key="chat_history")
    with gr.Row():
        model_name = gr.Dropdown(list(available_dict.keys()), value='gpt-3.5-turbo', label='模型')
        provider = gr.Dropdown(available_dict['gpt-3.5-turbo'], value='AiService', label='提供者', min_width=20)
        agent = gr.Dropdown(['系统提示', '维基百科', 'duckduckgo'], value='系统提示', label='Agent')
    system_msg = gr.Textbox(value="你是一名助手,可以解答问题。", label='系统提示')
    gr.ChatInterface(bot,
                     additional_inputs=[
                                model_name,
                                provider,
                                system_msg,
                                agent]
                    )
    with gr.Row():
        default_prompt_set = "1 中文提示词.json"
        prompt_set_name = gr.Dropdown(prompt_set_list.keys(), value=default_prompt_set, label='提示词集合')
        prompt_name = gr.Dropdown(prompt_set_list[default_prompt_set].keys(), label='提示词', min_width=5, container=True)

    prompt_set_name.select(change_prompt_set, prompt_set_name, prompt_name)
    model_name.select(change_model, model_name, provider)
    prompt_name.select(change_prompt, [prompt_set_name, prompt_name], system_msg)

demo.title = "AI Chat"
demo.queue()
demo.launch()