File size: 2,406 Bytes
5f3b01e 80250d2 5f3b01e 80250d2 5f3b01e 80250d2 5f3b01e 80250d2 5238878 5f3b01e 5238878 5f3b01e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
from typing import Any, List, Mapping, Optional
from g4f.Provider import (
Ails,
You,
Bing,
Yqcloud,
Theb,
Aichat,
Bard,
Vercel,
Forefront,
Lockchat,
Liaobots,
H2o,
ChatgptLogin,
DeepAi,
GetGpt,
AItianhu,
EasyChat,
Acytoo,
DfeHub,
AiService,
BingHuan,
Wewordle,
ChatgptAi,
)
from g4f import Provider
import g4f
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
provider_dict = {
'Ails': Ails,
'You': You,
'Bing': Bing,
'Yqcloud': Yqcloud,
'Theb': Theb,
'Aichat': Aichat,
'Bard': Bard,
'Vercel': Vercel,
'Forefront': Forefront,
'Lockchat': Lockchat,
'Liaobots': Liaobots,
'H2o': H2o,
'ChatgptLogin': ChatgptLogin,
'DeepAi': DeepAi,
'GetGpt': GetGpt,
'AItianhu': AItianhu,
'EasyChat': EasyChat,
'Acytoo': Acytoo,
'DfeHub': DfeHub,
'AiService': AiService,
'BingHuan': BingHuan,
'Wewordle': Wewordle,
'ChatgptAi': ChatgptAi,
}
provider_auth_settings = {
'Bard':{
'cookie':""
}
}
class CustomLLM(LLM):
model_name: str="gpt-3.5-turbo"
provider_name: str="GetGpt"
@property
def _llm_type(self) -> str:
return "custom"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
model_name = 'gpt-3.5-turbo',
provider = GetGpt
) -> str:
# if stop is not None:
# raise ValueError("stop kwargs are not permitted.")
provider_llm = getattr(Provider, self.provider_name)
provider_llm.working = True
bot_msg = g4f.ChatCompletion.create(model=self.model_name,
provider=provider_dict[self.provider_name],
messages=[{"role": "user",
"content": prompt}],
stream=provider_llm.supports_stream,
auth=provider_auth_settings['provider'] if provider_llm.needs_auth else None)
return bot_msg
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"model:": "gpt-3.5-turbo"} |