Spaces:
Sleeping
Sleeping
File size: 24,411 Bytes
8ff1f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
import re
import streamlit as st
import pandas as pd
from functools import lru_cache
from ortools.sat.python import cp_model
# Precompile common regex patterns
NOISE_PATTERNS = [
re.compile(r'\bthe person\b', re.IGNORECASE),
re.compile(r'\bperson\b', re.IGNORECASE),
re.compile(r'\bsmoker\b', re.IGNORECASE),
re.compile(r'\buses?\b', re.IGNORECASE),
re.compile(r'\bloves?\b', re.IGNORECASE),
re.compile(r'\bpartial to\b', re.IGNORECASE),
re.compile(r'\bbouquet of\b', re.IGNORECASE),
re.compile(r'\bboquet of\b', re.IGNORECASE),
re.compile(r'\bvase of\b', re.IGNORECASE),
re.compile(r'\bmany unique\b', re.IGNORECASE),
re.compile(r'\bbouquet\b', re.IGNORECASE),
re.compile(r'\bvase\b', re.IGNORECASE),
re.compile(r'\barrangement\b', re.IGNORECASE)
]
ARTICLE_PATTERN = re.compile(r'\b(a|an|the)\b', re.IGNORECASE)
EXTRA_WORDS_PATTERN = re.compile(r'\b(owner|lover|enthusiast)\b', re.IGNORECASE)
NON_ALNUM_PATTERN = re.compile(r'[^a-z0-9 ]')
MULTISPACE_PATTERN = re.compile(r'\s+')
# Mapping for ordinal words.
ordinal_map = {
"first": 1,
"second": 2,
"third": 3,
"fourth": 4,
"fifth": 5,
"sixth": 6
}
# Mapping for number words in between–clues.
word_to_num = {
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6
}
def sanitize_token(text):
text = text.lower()
for pattern in NOISE_PATTERNS:
text = pattern.sub('', text)
text = ARTICLE_PATTERN.sub('', text)
text = EXTRA_WORDS_PATTERN.sub('', text)
text = NON_ALNUM_PATTERN.sub(' ', text)
text = MULTISPACE_PATTERN.sub(' ', text)
return text.strip()
def normalize_token(token, candidate_key=None):
token_norm = token.lower()
if candidate_key == "month":
month_map = {
"january": "jan",
"february": "feb",
"march": "mar",
"april": "april",
"may": "may",
"june": "jun",
"july": "jul",
"august": "aug",
"september": "sept",
"october": "oct",
"november": "nov",
"december": "dec",
}
for full, abbr in month_map.items():
token_norm = token_norm.replace(full, abbr)
elif candidate_key == "nationalities":
nat_map = {
"swedish": "swede",
"british": "brit",
"danish": "dane"
}
for full, abbr in nat_map.items():
token_norm = token_norm.replace(full, abbr)
return token_norm
@lru_cache(maxsize=1024)
def lemmatize_text_cached(text):
if nlp is not None:
doc = nlp(text)
return " ".join(token.lemma_ for token in doc)
return text
def lemmatize_text(text):
return lemmatize_text_cached(text)
def get_category_key(category):
cat_lower = category.lower()
if "favorite" in cat_lower and "color" in cat_lower:
return "favorite_color"
if "hair" in cat_lower:
return "hair_color"
if "name" in cat_lower:
return "name"
if "vacation" in cat_lower:
return "vacation"
if "occupation" in cat_lower:
return "occupation"
if "flower" in cat_lower:
return "flower"
if "lunch" in cat_lower:
return "lunch"
if "smoothie" in cat_lower:
return "smoothie"
if "hobby" in cat_lower:
return "hobby"
if "pet" in cat_lower or "animal" in cat_lower:
return "animals"
if "birthday" in cat_lower or "month" in cat_lower:
return "month"
if "nationalities" in cat_lower:
return "nationalities"
tokens = cat_lower.split()
return tokens[-1] if tokens else cat_lower
def shorten_category(category):
key = get_category_key(category)
return key.replace('_', ' ')
# Try loading spaCy with the transformer-based model.
try:
import spacy
nlp = spacy.load("en_core_web_trf")
except Exception as e:
st.warning("spaCy model could not be loaded; proceeding without it: " + str(e))
nlp = None
class PuzzleSolver:
def __init__(self, puzzle_text, debug=False):
self.puzzle_text = puzzle_text
self.num_houses = None
self.categories = {}
self.category_keys = {}
self.clues = []
self.var = {}
self.model = cp_model.CpModel()
self.debug = debug
self.category_keywords = {
"nationalities": ["swede", "norwegian", "german", "chinese", "dane", "brit", "danish", "swedish", "british"],
"name": ["name"],
"vacation": ["vacation", "trip", "break"],
"occupation": ["occupation", "job"],
"lunch": ["lunch", "soup", "stew", "grilled", "cheese", "spaghetti", "pizza", "stir"],
"smoothie": ["smoothie", "cherry", "dragonfruit", "watermelon", "lime", "blueberry", "desert"],
"models": ["phone", "model", "iphone", "pixel", "oneplus", "samsung", "xiaomi", "huawei"],
"hair_color": ["hair"],
"month": ["month", "birthday", "birth"],
"hobby": ["photography", "cooking", "knitting", "woodworking", "paints", "painting", "gardening"],
"pet": ["rabbit", "hamster", "fish", "cat", "bird", "dog"],
"animals": ["rabbit", "dog", "horse", "fish", "bird", "cat"]
}
def parse_puzzle(self):
m = re.search(r"There are (\d+) houses", self.puzzle_text, re.IGNORECASE)
self.num_houses = int(m.group(1)) if m else 6
cat_pattern = re.compile(r"^[-*]\s*(.*?):\s*(.+)$")
for line in self.puzzle_text.splitlines():
line = line.strip()
m = cat_pattern.match(line)
if m:
cat_label = m.group(1).strip()
attr_line = m.group(2).strip()
attrs = [x.strip() for x in attr_line.split(",") if x.strip()]
self.categories[cat_label] = attrs
self.category_keys[cat_label] = get_category_key(cat_label)
if self.debug:
st.write(f"Parsed category: '{cat_label}' with attributes {attrs}")
st.write(f"Assigned key for category: {self.category_keys[cat_label]}")
clues_section = False
for line in self.puzzle_text.splitlines():
if "### Clues:" in line:
clues_section = True
continue
if clues_section:
clean = line.strip()
if clean:
self.clues.append(clean)
if self.debug:
st.write(f"Parsed clue: {clean}")
def build_variables(self):
for cat, attrs in self.categories.items():
self.var[cat] = {}
for attr in attrs:
self.var[cat][attr] = self.model.NewIntVar(1, self.num_houses, f"{cat}_{attr}")
self.model.AddAllDifferent(list(self.var[cat].values()))
if self.debug:
st.write(f"Added all-different constraint for category '{cat}'.")
def find_attribute(self, token):
token_san = sanitize_token(token)
candidate_key = None
for key, kws in self.category_keywords.items():
if any(kw in token_san for kw in kws):
candidate_key = key
if self.debug:
st.write(f"Debug: Token '{token}' suggests category key '{candidate_key}' based on keywords {kws}.")
break
if candidate_key == "pet":
candidate_key = "animals"
token_lemmatized = lemmatize_text(token_san)
if self.debug:
st.write(f"Debug: Lemmatized token for '{token}': '{token_lemmatized}'")
if candidate_key == "hobby" and "paint" in token_lemmatized:
token_lemmatized = token_lemmatized.replace("paint", "painting")
if self.debug:
st.write(f"Debug: Adjusted hobby token to '{token_lemmatized}' for proper matching.")
if candidate_key in ["month", "nationalities"]:
token_san = normalize_token(token_san, candidate_key)
if self.debug:
st.write(f"Debug: Normalized token for {candidate_key}: '{token_san}'")
if candidate_key:
categories_to_search = [(cat, attrs) for cat, attrs in self.categories.items() if self.category_keys.get(cat) == candidate_key]
if self.debug:
st.write(f"Debug: Restricted search to categories: {[cat for cat, _ in categories_to_search]}")
else:
categories_to_search = self.categories.items()
best = None
best_len = 0
for cat, attrs in categories_to_search:
for attr in attrs:
attr_san = sanitize_token(attr)
if candidate_key in ["month", "nationalities"]:
attr_san = normalize_token(attr_san, candidate_key)
pattern = rf'\b{re.escape(attr_san)}\b'
if re.search(pattern, token_san) or re.search(pattern, token_lemmatized):
if len(attr_san) > best_len:
best = (cat, attr)
best_len = len(attr_san)
else:
alt = attr_san[:-1] if attr_san.endswith('s') else attr_san + 's'
if re.search(rf'\b{re.escape(alt)}\b', token_san) or re.search(rf'\b{re.escape(alt)}\b', token_lemmatized):
if len(attr_san) > best_len:
best = (cat, attr)
best_len = len(attr_san)
if best is None and candidate_key in ["month", "nationalities"]:
if self.debug:
st.write(f"Debug: Fallback for {candidate_key}: no match found in token '{token_san}'. Trying explicit substrings.")
mapping = {}
if candidate_key == "month":
mapping = {"jan": "jan", "feb": "feb", "mar": "mar",
"april": "april", "may": "may", "jun": "jun",
"jul": "jul", "aug": "aug", "sept": "sept", "oct": "oct", "nov": "nov", "dec": "dec"}
elif candidate_key == "nationalities":
mapping = {"swede": "swede", "norwegian": "norwegian", "german": "german",
"chinese": "chinese", "dane": "dane", "brit": "brit"}
for key_abbr in mapping.values():
if re.search(rf'\b{re.escape(key_abbr)}\b', token_san):
for cat, attrs in categories_to_search:
for attr in attrs:
attr_san = normalize_token(sanitize_token(attr), candidate_key)
if attr_san == key_abbr:
best = (cat, attr)
best_len = len(attr_san)
if self.debug:
st.write(f"Debug: Found fallback match: '{attr_san}' in token '{token_san}'.")
break
if best is not None:
break
if best is not None:
break
if best is None and self.debug:
st.write(f"DEBUG: No attribute found for token '{token}' (sanitized: '{token_san}', lemmatized: '{token_lemmatized}').")
return best
def find_all_attributes_in_text(self, text):
found = []
text_san = sanitize_token(text)
for cat, attrs in self.categories.items():
for attr in attrs:
attr_san = sanitize_token(attr)
if re.search(rf'\b{re.escape(attr_san)}\b', text_san):
found.append((cat, attr))
unique = []
seen = set()
for pair in found:
if pair not in seen:
unique.append(pair)
seen.add(pair)
return unique
def spacy_equality_extraction(self, text):
if nlp is None:
return None, None
doc = nlp(text)
for token in doc:
if token.lemma_ == "be" and token.dep_ == "ROOT":
subj = None
attr = None
for child in token.children:
if child.dep_ in ["nsubj", "nsubjpass"]:
subj = child
if child.dep_ in ["attr", "acomp"]:
attr = child
if subj and attr:
subject_span = doc[subj.left_edge.i : subj.right_edge.i+1].text
attr_span = doc[attr.left_edge.i : attr.right_edge.i+1].text
return subject_span, attr_span
ents = list(doc.ents)
if len(ents) >= 2:
return ents[0].text, ents[1].text
return None, None
def apply_constraint_equality(self, token1, token2):
a1 = self.find_attribute(token1)
a2 = self.find_attribute(token2)
if a1 and a2:
cat1, attr1 = a1
cat2, attr2 = a2
self.model.Add(self.var[cat1][attr1] == self.var[cat2][attr2])
if self.debug:
st.write(f"Added constraint: [{cat1}][{attr1}] == [{cat2}][{attr2}]")
else:
if self.debug:
st.write(f"Warning: could not apply equality between '{token1}' and '{token2}'")
def apply_constraint_inequality(self, token, house_number):
a1 = self.find_attribute(token)
if a1:
cat, attr = a1
self.model.Add(self.var[cat][attr] != house_number)
if self.debug:
st.write(f"Added constraint: [{cat}][{attr}] != {house_number}")
else:
if self.debug:
st.write(f"Warning: could not apply inequality for '{token}' at house {house_number}")
def apply_constraint_position(self, token1, op, token2):
a1 = self.find_attribute(token1)
a2 = self.find_attribute(token2)
if a1 and a2:
cat1, attr1 = a1
cat2, attr2 = a2
if op == "==":
self.model.Add(self.var[cat1][attr1] == self.var[cat2][attr2])
if self.debug:
st.write(f"Added constraint: [{cat1}][{attr1}] == [{cat2}][{attr2}]")
elif op == "<":
self.model.Add(self.var[cat1][attr1] < self.var[cat2][attr2])
if self.debug:
st.write(f"Added constraint: [{cat1}][{attr1}] < [{cat2}][{attr2}]")
elif op == ">":
self.model.Add(self.var[cat1][attr1] > self.var[cat2][attr2])
if self.debug:
st.write(f"Added constraint: [{cat1}][{attr1}] > [{cat2}][{attr2}]")
elif op == "+1":
self.model.Add(self.var[cat1][attr1] + 1 == self.var[cat2][attr2])
if self.debug:
st.write(f"Added constraint: [{cat1}][{attr1}] + 1 == [{cat2}][{attr2}]")
elif op == "-1":
self.model.Add(self.var[cat1][attr1] - 1 == self.var[cat2][attr2])
if self.debug:
st.write(f"Added constraint: [{cat1}][{attr1}] - 1 == [{cat2}][{attr2}]")
else:
if self.debug:
st.write(f"Warning: could not apply position constraint between '{token1}' and '{token2}' with op '{op}'")
def apply_constraint_next_to(self, token1, token2):
a1 = self.find_attribute(token1)
a2 = self.find_attribute(token2)
if a1 and a2:
cat1, attr1 = a1
cat2, attr2 = a2
diff = self.model.NewIntVar(0, self.num_houses, f"diff_{attr1}_{attr2}")
self.model.AddAbsEquality(diff, self.var[cat1][attr1] - self.var[cat2][attr2])
self.model.Add(diff == 1)
if self.debug:
st.write(f"Added next-to constraint: |[{cat1}][{attr1}] - [{cat2}][{attr2}]| == 1")
else:
if self.debug:
st.write(f"Warning: could not apply next-to constraint between '{token1}' and '{token2}'")
def apply_constraint_between(self, token1, token2, houses_between):
a1 = self.find_attribute(token1)
a2 = self.find_attribute(token2)
if a1 and a2:
cat1, attr1 = a1
cat2, attr2 = a2
diff = self.model.NewIntVar(0, self.num_houses, f"between_{attr1}_{attr2}")
self.model.AddAbsEquality(diff, self.var[cat1][attr1] - self.var[cat2][attr2])
self.model.Add(diff == houses_between + 1)
if self.debug:
st.write(f"Added between constraint: |[{cat1}][{attr1}] - [{cat2}][{attr2}]| == {houses_between + 1}")
else:
if self.debug:
st.write(f"Warning: could not apply between constraint for '{token1}' and '{token2}' with {houses_between} houses in between")
def apply_constraint_fixed(self, token, house_number):
a1 = self.find_attribute(token)
if a1:
cat, attr = a1
self.model.Add(self.var[cat][attr] == house_number)
if self.debug:
st.write(f"Added fixed constraint: [{cat}][{attr}] == {house_number}")
else:
if self.debug:
st.write(f"Warning: could not apply fixed constraint for '{token}' at house {house_number}")
def process_clue(self, clue):
text = re.sub(r'^\d+\.\s*', '', clue).strip()
if self.debug:
st.write(f"Processing clue: {text}")
ordinal_numbers = r"(?:\d+|first|second|third|fourth|fifth|sixth)"
m_fixed = re.search(rf"(.+?) is in the ({ordinal_numbers}) house", text, re.IGNORECASE)
if m_fixed:
token = m_fixed.group(1).strip()
num_str = m_fixed.group(2).strip().lower()
house_num = int(num_str) if num_str.isdigit() else ordinal_map.get(num_str)
if house_num is not None:
self.apply_constraint_fixed(token, house_num)
return
m_not = re.search(rf"(.+?) is not in the ({ordinal_numbers}) house", text, re.IGNORECASE)
if m_not:
token = m_not.group(1).strip()
num_str = m_not.group(2).strip().lower()
house_num = int(num_str) if num_str.isdigit() else ordinal_map.get(num_str)
if house_num is not None:
self.apply_constraint_inequality(token, house_num)
return
m_left = re.search(r"(.+?) is directly left of (.+)", text, re.IGNORECASE)
if m_left:
token1 = m_left.group(1).strip()
token2 = m_left.group(2).strip()
self.apply_constraint_position(token1, "+1", token2)
return
m_right = re.search(r"(.+?) is directly right of (.+)", text, re.IGNORECASE)
if m_right:
token1 = m_right.group(1).strip()
token2 = m_right.group(2).strip()
self.apply_constraint_position(token1, "-1", token2)
return
m_sl = re.search(r"(.+?) is somewhere to the left of (.+)", text, re.IGNORECASE)
if m_sl:
token1 = m_sl.group(1).strip()
token2 = m_sl.group(2).strip()
self.apply_constraint_position(token1, "<", token2)
return
m_sr = re.search(r"(.+?) is somewhere to the right of (.+)", text, re.IGNORECASE)
if m_sr:
token1 = m_sr.group(1).strip()
token2 = m_sr.group(2).strip()
self.apply_constraint_position(token1, ">", token2)
return
m_next = re.search(r"(.+?) and (.+?) are next to each other", text, re.IGNORECASE)
if m_next:
token1 = m_next.group(1).strip()
token2 = m_next.group(2).strip()
self.apply_constraint_next_to(token1, token2)
return
m_between = re.search(rf"There (?:are|is) (\d+|one|two|three|four|five|six) house(?:s)? between (.+?) and (.+)", text, re.IGNORECASE)
if m_between:
num_str = m_between.group(1).strip().lower()
houses_between = int(num_str) if num_str.isdigit() else word_to_num.get(num_str)
token1 = m_between.group(2).strip()
token2 = m_between.group(3).strip()
self.apply_constraint_between(token1, token2, houses_between)
return
m_eq = re.search(r"(.+)\sis(?: the)?\s(.+)", text, re.IGNORECASE)
if m_eq:
token1 = m_eq.group(1).strip()
token2 = m_eq.group(2).strip()
token1 = re.sub(r"^(the person who\s+|who\s+)", "", token1, flags=re.IGNORECASE).strip()
token2 = re.sub(r"^(a\s+|an\s+|the\s+)", "", token2, flags=re.IGNORECASE).strip()
a1 = self.find_attribute(token1)
a2 = self.find_attribute(token2)
if a1 and a2:
self.apply_constraint_equality(token1, token2)
return
else:
if self.debug:
st.write("Equality regex failed to extract valid attributes using token cleaning.")
if nlp is not None:
left, right = self.spacy_equality_extraction(text)
if left and right:
if self.debug:
st.write(f"spaCy extracted equality: '{left}' == '{right}'")
self.apply_constraint_equality(left, right)
return
if self.debug:
st.write(f"Unprocessed clue: {text}")
def process_all_clues(self):
for clue in self.clues:
self.process_clue(clue)
def solve(self):
solver = cp_model.CpSolver()
# Use all available cores (0 means all available, 1 means single core for deployment to streamlit community cloud)
solver.parameters.num_search_workers = 1
status = solver.Solve(self.model)
if status in (cp_model.OPTIMAL, cp_model.FEASIBLE):
solution = {}
for house in range(1, self.num_houses + 1):
solution[house] = {}
for cat, attr_dict in self.var.items():
for attr, var in attr_dict.items():
if solver.Value(var) == house:
solution[house][cat] = attr
return solution
else:
if self.debug:
st.write("No solution found. The clues may be contradictory or incomplete.")
return None
def print_solution(self, solution):
if solution:
headers = ["House"] + [shorten_category(cat) for cat in self.categories.keys()]
table = []
for house in sorted(solution.keys()):
row = [str(house)]
for cat in self.categories.keys():
row.append(solution[house].get(cat, ""))
table.append(row)
df = pd.DataFrame(table, columns=headers)
return df
else:
return None
# Streamlit UI
st.title("Zebra Logic Puzzle Solver")
st.subheader("🦓 ZebraLogic: Benchmarking the Logical Reasoning Ability of Language Models")
st.markdown("""
Copy the Zebra Logic Puzzles description [from the huggingface site](https://huggingface.co/spaces/allenai/ZebraLogic), and paste it below.
""")
puzzle_text = st.text_area("Puzzle Input", height=300)
show_debug = st.checkbox("Show Debug Output", value=False)
# Use session_state to ensure the solution is computed only once per click.
if "puzzle_solved" not in st.session_state:
st.session_state["puzzle_solved"] = False
if st.button("Solve Puzzle") or st.session_state["puzzle_solved"]:
# Indicate that we've clicked the button
st.session_state["puzzle_solved"] = True
solver_instance = PuzzleSolver(puzzle_text, debug=show_debug)
solver_instance.parse_puzzle()
solver_instance.build_variables()
solver_instance.process_all_clues()
# st.subheader("Parsed Attributes (Categories & Their Attributes)")
# for cat, attrs in solver_instance.categories.items():
# st.markdown(f"**{cat}**: {', '.join(attrs)}")
# st.subheader("Parsed Clues")
# for i, clue in enumerate(solver_instance.clues, start=1):
# st.markdown(f"{i}. {clue}")
solution = solver_instance.solve()
st.subheader("Solution Table")
df_solution = solver_instance.print_solution(solution)
if df_solution is not None:
st.table(df_solution)
else:
st.error("No solution found. The clues may be contradictory or incomplete.") |