File size: 6,845 Bytes
522606a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union

import torch

from ..utils import BaseOutput


SCHEDULER_CONFIG_NAME = "scheduler_config.json"


@dataclass
class SchedulerOutput(BaseOutput):
    """
    Base class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class SchedulerMixin:
    """
    Mixin containing common functions for the schedulers.

    Class attributes:
        - **_compatibles** (`List[str]`) -- A list of classes that are compatible with the parent class, so that
          `from_config` can be used from a class different than the one used to save the config (should be overridden
          by parent class).
    """

    config_name = SCHEDULER_CONFIG_NAME
    _compatibles = []
    has_compatibles = True

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Dict[str, Any] = None,
        subfolder: Optional[str] = None,
        return_unused_kwargs=False,
        **kwargs,
    ):
        r"""
        Instantiate a Scheduler class from a pre-defined JSON configuration file inside a directory or Hub repo.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
                      organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing the schedluer configurations saved using
                      [`~SchedulerMixin.save_pretrained`], e.g., `./my_model_directory/`.
            subfolder (`str`, *optional*):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                Whether kwargs that are not consumed by the Python class should be returned or not.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.

        <Tip>

         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.

        </Tip>

        """
        config, kwargs = cls.load_config(
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            subfolder=subfolder,
            return_unused_kwargs=True,
            **kwargs,
        )
        return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs)

    def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
        """
        Save a scheduler configuration object to the directory `save_directory`, so that it can be re-loaded using the
        [`~SchedulerMixin.from_pretrained`] class method.

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
        """
        self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs)

    @property
    def compatibles(self):
        """
        Returns all schedulers that are compatible with this scheduler

        Returns:
            `List[SchedulerMixin]`: List of compatible schedulers
        """
        return self._get_compatibles()

    @classmethod
    def _get_compatibles(cls):
        compatible_classes_str = list(set([cls.__name__] + cls._compatibles))
        diffusers_library = importlib.import_module(__name__.split(".")[0])
        compatible_classes = [
            getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c)
        ]
        return compatible_classes