File size: 17,326 Bytes
8a8183d
 
 
 
 
f6a7c13
8a8183d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cf3c20
669631f
8a8183d
 
4cade91
 
 
 
 
 
 
 
 
 
8a8183d
 
 
 
 
 
 
 
 
 
 
 
 
5ff617d
 
 
8a8183d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669631f
8a8183d
94caf64
 
5ff617d
 
94caf64
5ff617d
 
 
 
 
 
 
 
 
 
8a8183d
 
 
87a1f0d
8a8183d
 
0cf3c20
 
 
 
 
 
 
 
 
 
 
 
8a8183d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cf3c20
8a8183d
 
 
 
5ff617d
 
 
 
 
 
 
 
 
 
 
 
8a8183d
 
 
 
5ff617d
8a8183d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ff617d
8a8183d
 
 
 
 
 
 
 
 
 
 
 
 
 
669631f
8a8183d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94caf64
 
4cade91
94caf64
 
 
 
 
5ff617d
 
 
 
 
 
 
 
 
8a8183d
4cade91
8a8183d
 
 
 
 
4cade91
8a8183d
4cade91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669631f
4cade91
 
 
 
 
 
5ff617d
669631f
4cade91
 
 
 
669631f
 
5ff617d
4cade91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94caf64
 
 
 
5ff617d
94caf64
 
4cade91
 
669631f
 
 
94caf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669631f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import concurrent.futures
from collections import defaultdict
import pandas as pd
import numpy as np
import json
import os
import pickle
import pprint
from io import StringIO
import textwrap
import time
import re

from openai import OpenAI
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))

import octoai
octoai_client = octoai.client.Client(token=os.getenv('OCTOML_KEY'))

from pinecone import Pinecone, ServerlessSpec
pc = Pinecone(api_key=os.getenv('PINECONE_API_KEY'))
pc_256 = pc.Index('prorata-postman-ds-256-v2')
pc_128 = pc.Index('prorata-postman-ds-128-v2')


from langchain.text_splitter import RecursiveCharacterTextSplitter

sentence_splitter = RecursiveCharacterTextSplitter(
    chunk_size=128,
    chunk_overlap=0,
    separators=["\n\n", "\n", "."],
    keep_separator=False
)


from functools import cache 

@cache
def get_embedding(text, model="text-embedding-3-small"):
   text = text.replace("\n", " ")
   return openai_client.embeddings.create(input = [text], model=model).data[0].embedding

def get_embedding_l(text_l, model="text-embedding-3-small"):
   text_l = [text.replace("\n", " ") for text in text_l]
   res = openai_client.embeddings.create(input=text_l, model=model)
   embeds = [record.embedding for record in res.data]
   return embeds

def do_character_replacements(text):
    # TODO: double quotes need to be removed properly since they interfere with parsing of JSON responses
    return text.translate(str.maketrans({'“': '\'\'', '”': '\'\'', '"': '\'\'', "’": "'"}))

def parse_json_string(content):
    fixed_content = content
    for _ in range(20):
        try:
            result = json.loads(fixed_content)
            break
        except Exception as e:
            print(e)
            if "Expecting ',' delimiter" in str(e):
                # "Expecting , delimiter: line x column y (char d)"
                idx = int(re.findall(r'\(char (\d+)\)', str(e))[0])
                fixed_content = fixed_content[:idx] + ',' + fixed_content[idx:]
                print(fixed_content)
                print()
            elif "Expecting property name enclosed in double quotes" in str(e):
                # Expecting property name enclosed in double quotes: line x column y (char d)
                idx = int(re.findall(r'\(char (\d+)\)', str(e))[0])
                fixed_content = fixed_content[:idx-1] + '}' + fixed_content[idx:]
                print(fixed_content)
                print()
            else:
                raise ValueError(str(e))
    return result

# prompt_af_template_llama3 = "Please breakdown the following paragraph into independent and atomic facts. Format your response as a signle JSON object, a list of facts:\n\n{}"
prompt_af_template_llama3 = "Please breakdown the following paragraph into independent and atomic facts. Format your response in JSON as a list of 'fact' objects:\n\n{}"

# prompt_tf_template = "Given the context below, anwer the question that follows. Please format your answer in JSON with a yes or no determination and rationale for the determination. \n\nContext: {}\n\nQuestion: {} Is this claim true or false?"
prompt_tf_template = (
    "Given the context below, anwer the question that follows. Please format your answer in JSON with a yes or no determination"
    " and rationale for the determination. \n\nContext: ```{}```\n\nQuestion: <{}>"
    " According to the context, is the previous claim (in between <> braces) true or false?"
)
# prompt_tf_template = (
#     "Given the context below, anwer the question that follows. Please format your answer in JSON with a yes or no determination"
#     " and rationale for the determination. \n\nContext: ```{}```\n\nQuestion: <{}>"
#     " Does the context explicitly support the previous claim (in between <> braces), true or false?"
# )
# prompt_tf_template = (
#     "Given the context below, anwer the question that follows. Please format your answer in JSON with a yes or no determination"
#     " and rationale for the determination. \n\nContext: ```{}```\n\nQuestion: <{}>"
#     " Does the context explicitly support or strongly suggest the previous claim (in between <> braces), yes or no?"
# )

def get_atoms_list(answer, file=None):
    prompt_af = prompt_af_template_llama3.format(answer)
    response, atoms_l = None, []
    for _ in range(5):
        try:
            # response = octoai_client.chat.completions.create(
            #     model="meta-llama-3-70b-instruct",
            #     messages=[
            #         {"role": "system", "content": "You are a helpful assistant."},
            #         {"role": "user", "content": prompt_af}
            #     ],
            #     # response_format={"type": "json_object"},
            #     max_tokens=512,
            #     presence_penalty=0,
            #     temperature=0.1,
            #     top_p=0.9,
            # )
            response = octoai_client.chat.completions.create(
                model="meta-llama-3-70b-instruct",
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt_af}
                ],
                # response_format={"type": "json_object"},
                max_tokens=512,
                presence_penalty=0,
                temperature=0.1,
                top_p=0.9,
            )
            content = response.choices[0].message.content
            idx1 = content.find('```')
            idx2 = idx1+3 + content[idx1+3:].find('```')
            # atoms_l = json.loads(content[idx1+3:idx2])
            atoms_l = parse_json_string(content[idx1+3:idx2])
            atoms_l = [a['fact'] for a in atoms_l]
            break
        except Exception as error:
            print(error, file=file)
            print(response, file=file)
            print(content[idx1+3:idx2], file=file)
            time.sleep(2)
    return atoms_l

def get_topk_matches(atom, k=5, pc_index=pc_256):
    embed_atom = get_embedding(atom)
    res = pc_index.query(vector=embed_atom, top_k=k, include_metadata=True)
    return res['matches']

def get_match_atom_entailment_determination(_match, atom, file=None, DEBUG=0):
    if 'chunk_text_l' in _match:
        chunk_text = '\n\n'.join(_match['chunk_text_l'])
    else:
        chunk_text = _match['metadata']['text']

    print(f"Determining entailment for url={_match['metadata']['url']} and atom {atom}...")

    chunk_text = do_character_replacements(chunk_text)
    prompt_tf = prompt_tf_template.format(chunk_text, atom)
    if DEBUG > 0:
        print(prompt_tf)
    response = None
    chunk_determination = {}
    chunk_determination['chunk_id'] = _match['id']
    chunk_determination['true'] = False
    chunk_determination['rationale'] = ''
    for _ in range(5):
        try:
            response = octoai_client.chat.completions.create(
                model="meta-llama-3-70b-instruct",
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt_tf}
                ],
                # response_format={"type": "json_object"},
                max_tokens=512,
                # presence_penalty=0,
                temperature=0.1,
                # top_p=0.9,
            )
            content = response.choices[0].message.content
            idx1 = content.find('{')
            idx2 = content.find('}')
            chunk_determination.update(json.loads(content[idx1:idx2+1]))
            _det_lower = chunk_determination['determination'].lower()
            chunk_determination['true'] = "true" in _det_lower or "yes" in _det_lower
            break
        except Exception as error:
            print(error, file=file)
            print(prompt_tf, file=file)
            print(response, file=file)
            time.sleep(2)
    print(f"Finished entailment for url={_match['metadata']['url']} and atom {atom}.")
    return chunk_determination

def get_atom_support(atom, file=None):
    topk_matches = get_topk_matches(atom)
    atom_support = {}
    for _match in topk_matches:
        chunk_determination = atom_support.get(_match['metadata']['url'], {})
        if not chunk_determination or not chunk_determination['true']:
            atom_support[_match['metadata']['url']] = get_match_atom_entailment_determination(_match, atom, file=file)
    return atom_support

def get_atom_support_list(atoms_l, file=None):
    return [get_atom_support(a, file=file) for a in atoms_l]

def credit_atom_support_list(atom_support_l):

    num_atoms = len(atom_support_l)
    credit_d = defaultdict(float)

    for atom_support in atom_support_l:

        atom_support_size = 0.0
        for url_determination_d in atom_support.values():
            if url_determination_d['true']:
                atom_support_size += 1.0

        for url, url_determination_d in atom_support.items():
            if url_determination_d['true']:
                credit_d[url] += 1.0 / atom_support_size

    for url in credit_d.keys():
        credit_d[url] = credit_d[url] / num_atoms

    return credit_d

def print_atom_support(atom_support, prefix='', print_chunks=False, file=None):
    for url, aggmatch_determination in atom_support.items():
        print(f"{prefix}{url}:", file=file)
        print(f"{prefix}    Determination: {'YES' if aggmatch_determination['true'] else 'NO'}", file=file)
        # print(f"{prefix}    Rationale: {aggmatch_determination['rationale']}", file=file)
        print(textwrap.fill(f"{prefix}    Rationale: {aggmatch_determination['rationale']}", initial_indent='', subsequent_indent=f'{prefix}        ', width=100), file=file)

        if print_chunks:
            # n_chunks = len(aggmatch_determination['offset_l'])
            # for j in range(n_chunks):
            #     cid, coffset = aggmatch_determination['id_l'][j], aggmatch_determination['offset_l'][j]
            #     cend_offset = aggmatch_determination['offset_l'][j+1] if j < n_chunks-1 else len(aggmatch_determination['chunks_text'])
            #     ctext = aggmatch_determination['chunks_text'][coffset:cend_offset]
            #     print(textwrap.fill(f"{prefix}    Chunk {cid}: {ctext}\n", initial_indent='', subsequent_indent=f'{prefix}        ', width=100), file=file)
            if 'chunk_text_l' in aggmatch_determination:
                for cid, ctext in zip(aggmatch_determination['id_l'], aggmatch_determination['chunk_text_l']):
                    print(textwrap.fill(f"{prefix}    Chunk {cid}: {ctext}\n", initial_indent='', subsequent_indent=f'{prefix}        ', width=100), file=file)

def print_credit_dist(credit_dist, prefix='', url_to_id=None, file=None):
    credit_l = [(url, w) for url, w in credit_dist.items()]
    credit_l = sorted(credit_l, key=lambda x: x[1], reverse=True)

    for url, w in credit_l:
        if url_to_id is None:
            print(f"{prefix}{url}: {100*w:.2f}%", file=file)
        else:
            print(f"{prefix}{url_to_id[url]} {url}: {100*w:.2f}%", file=file)


# concurrent LLM calls
def get_atom_topk_matches_l_concurrent(atoms_l, max_workers=4):
    atom_topkmatches_l = []
    with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = []
        for atom in atoms_l:
            futures.append(executor.submit(get_topk_matches, atom))
            
        for f in futures:
            r = f.result()
            atom_topkmatches_l.append(r)
    return atom_topkmatches_l

def aggregate_atom_topkmatches_l(atom_topkmatches_l):
    atom_url_to_aggmacth_maps_l = []
    for atom_topkmatches in atom_topkmatches_l:

        atom_url_to_aggmatch_map = {}
        atom_url_to_aggmacth_maps_l.append(atom_url_to_aggmatch_map)

        for _match in atom_topkmatches:

            if _match['metadata']['url'] not in atom_url_to_aggmatch_map:
                match_copy = {}
                match_copy['id'] = _match['id']
                match_copy['id_l'] = [_match['id']]
                match_copy['score'] = _match['score']
                match_copy['values'] = _match['values']
                # TODO: change to list of chunks and then append at query time
                match_copy['metadata'] = {}
                match_copy['metadata']['url'] = _match['metadata']['url']
                match_copy['metadata']['chunk'] = _match['metadata']['chunk']
                match_copy['chunk_text_l'] = [_match['metadata']['text']]
                match_copy['metadata']['title'] = _match['metadata']['title']

                atom_url_to_aggmatch_map[_match['metadata']['url']] = match_copy
            else:
                prev_match = atom_url_to_aggmatch_map[_match['metadata']['url']]

                prev_match['id_l'].append(_match['id'])
                match_copy['chunk_text_l'].append(_match['metadata']['text'])

    atomidx_w_single_url_aggmatch_l = []
    for idx, atom_url_to_aggmatch_map in enumerate(atom_url_to_aggmacth_maps_l):
        for agg_match in atom_url_to_aggmatch_map.values():
            atomidx_w_single_url_aggmatch_l.append((idx, agg_match))
    
    return atomidx_w_single_url_aggmatch_l

def get_atmom_support_l_from_atomidx_w_single_url_aggmatch_l_concurrent(atoms_l, atomidx_w_single_url_aggmatch_l, max_workers=4):
    atom_support_l = [{} for _ in atoms_l]

    with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = []

        for atomidx_w_single_url_aggmatch in atomidx_w_single_url_aggmatch_l:
            futures.append(executor.submit(
                    get_match_atom_entailment_determination,
                    atomidx_w_single_url_aggmatch[1],
                    atoms_l[atomidx_w_single_url_aggmatch[0]],
                )
            )
            
        for f, atomidx_w_single_url_aggmatch in zip(futures, atomidx_w_single_url_aggmatch_l):
            atom_support = atom_support_l[atomidx_w_single_url_aggmatch[0]]
            aggmatch = atomidx_w_single_url_aggmatch[1]

            aggmatch_determination = f.result()
            aggmatch_determination['id_l'] = aggmatch['id_l']
            aggmatch_determination['chunk_text_l'] = aggmatch['chunk_text_l']

            atom_support[aggmatch['metadata']['url']] = aggmatch_determination

    return atom_support_l

style_str = """
    <style>
    .section-title {
        /* font-family: cursive, sans-serif; */
        font-family: Optima, sans-serif;
        width: 100%;
        font-size: 2.5em;
        font-weight: bolder;
        padding-bottom: 20px;
        padding-top: 20px;
        /* font-style: italic; */
    }
    .claim-header {
        /* font-family: cursive, sans-serif; */
        font-family: Optima, sans-serif;
        width: 100%;
        font-size: 1.5em;
        font-weight: normal;
        padding-bottom: 10px;
        padding-top: 10px;
        /* font-style: italic; */
    }
    .claim-doc-title {
        /* font-family: cursive, sans-serif; */
        font-family: Optima, sans-serif;
        width: 100%;
        font-size: 1.25em;
        font-weight: normal;
        padding-left: 20px;
        padding-bottom: 5px;
        padding-top: 10px;
        /* font-style: italic; */
    } 
    .claim-doc-url {
        /* font-family: cursive, sans-serif; */
        font-size: 0.75em;
        padding-left: 20px;
        padding-bottom: 10px;
        padding-top: 0px;
        /* font-weight: bolder; */
        /* font-style: italic; */
    }
    .claim-determination {
        /* font-family: cursive, sans-serif; */
        font-family: Optima, sans-serif;
        width: 100%;
        font-size: 1em;
        font-weight: normal;
        padding-left: 60px;
        padding-bottom: 10px;
        /* font-style: italic; */
    }
    .claim-text {
        /* font-family: cursive, sans-serif; */
        font-family: Optima, sans-serif;
        font-size: 1em;
        white-space: pre-wrap;
        padding-left: 80px;
        text-indent: -20px; 
        padding-bottom: 20px;
        /* font-weight: bolder; */
        /* font-style: italic; */
    }

    .doc-title {
        /* font-family: cursive, sans-serif; */
        font-family: Optima, sans-serif;
        width: 100%;
        display: inline-block;
        font-size: 2em;
        font-weight: bolder;
        padding-top: 20px;
        /* font-style: italic; */
    }
    .doc-url {
        /* font-family: cursive, sans-serif; */
        font-size: 1em;
        padding-left: 40px;
        padding-bottom: 10px;
        /* font-weight: bolder; */
        /* font-style: italic; */
    }
    .doc-text {
        /* font-family: cursive, sans-serif; */
        font-family: Optima, sans-serif;
        font-size: 1.5em;
        white-space: pre-wrap;
        padding-left: 40px;
        padding-bottom: 20px;
        /* font-weight: bolder; */
        /* font-style: italic; */
    }
    .doc-text .chunk-separator {
        /* font-style: italic; */
        color: #0000FF;
    }
    .doc-title > img {
        width: 22px;
        height: 22px;
        border-radius: 50%;
        overflow: hidden;
        background-color: transparent;
        display: inline-block;
        vertical-align: middle;
    }
    .doc-title > score {
        font-family: Optima, sans-serif;
        font-weight: normal;
        float: right;
    }
    </style>
"""