File size: 826 Bytes
19d68bf
 
 
8b7f1e2
19d68bf
 
 
 
 
 
 
 
 
 
 
 
8b7f1e2
19d68bf
 
f2926d2
 
16c1617
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import torch.nn.functional as F
import time


feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')

def predict(image):
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class_prob = F.softmax(logits, dim=-1).detach().numpy().max()
    predicted_class_idx = logits.argmax(-1).item()
    label = model.config.id2label[predicted_class_idx].split(",")[0]
    time.sleep(2)
    return {label: float(predicted_class_prob)}
 
import gradio as gr

gr.Interface(predict, gr.Image(type="pil"), "label").queue(concurrency_count=2).launch()