File size: 1,134 Bytes
aeadde1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
from transformers import pipeline
import numpy as np
hhem = pipeline("text-classification", model="vectara/hallucination_evaluation_model")
def get_hhem_score(sentence1, sentence2):
output = hhem(f'{sentence1} [SEP] {sentence2}')
score = np.round(output[0]['score'], 4)
return score
demo = gr.Interface(
fn=get_hhem_score,
inputs=[
gr.components.Textbox(label="Sentence 1"),
gr.components.Textbox(label="Sentence 2"),
],
outputs=gr.components.Label(num_top_classes=1, label='HHEM Score'),
examples=[
["Vectara provides RAG-as-a-service", "RAG-as-a-service is provided by Vectara"],
["The cat sat on the mat.", "A feline was resting on a small rug."],
["The quick brown fox jumps over the lazy dog.", "A fast red fox leaps across a sleepy canine."],
],
cache_examples=False,
allow_flagging="never",
flagging_options=None,
title="HHEM Demo",
description="This demo uses Vectara's Hallucination Evaluation model (HHEM) to calculate factual consistency between two input sentences.",
)
# Launch the demo
demo.launch() |