File size: 12,077 Bytes
e394497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from typing import List, Tuple

import cv2
import numpy as np
import onnxruntime as ort

def preprocess(
    img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Do preprocessing for RTMPose model inference.

    Args:
        img (np.ndarray): Input image in shape.
        input_size (tuple): Input image size in shape (w, h).

    Returns:
        tuple:
        - resized_img (np.ndarray): Preprocessed image.
        - center (np.ndarray): Center of image.
        - scale (np.ndarray): Scale of image.
    """
    # get shape of image
    img_shape = img.shape[:2]
    out_img, out_center, out_scale = [], [], []
    if len(out_bbox) == 0:
        out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
    for i in range(len(out_bbox)):
        x0 = out_bbox[i][0]
        y0 = out_bbox[i][1]
        x1 = out_bbox[i][2]
        y1 = out_bbox[i][3]
        bbox = np.array([x0, y0, x1, y1])

        # get center and scale
        center, scale = bbox_xyxy2cs(bbox, padding=1.25)

        # do affine transformation
        resized_img, scale = top_down_affine(input_size, scale, center, img)

        # normalize image
        mean = np.array([123.675, 116.28, 103.53])
        std = np.array([58.395, 57.12, 57.375])
        resized_img = (resized_img - mean) / std

        out_img.append(resized_img)
        out_center.append(center)
        out_scale.append(scale)

    return out_img, out_center, out_scale


def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
    """Inference RTMPose model.

    Args:
        sess (ort.InferenceSession): ONNXRuntime session.
        img (np.ndarray): Input image in shape.

    Returns:
        outputs (np.ndarray): Output of RTMPose model.
    """
    all_out = []
    # build input
    for i in range(len(img)):
        input = [img[i].transpose(2, 0, 1)]

        # build output
        sess_input = {sess.get_inputs()[0].name: input}
        sess_output = []
        for out in sess.get_outputs():
            sess_output.append(out.name)

        # run model
        outputs = sess.run(sess_output, sess_input)
        all_out.append(outputs)

    return all_out


def postprocess(outputs: List[np.ndarray],
                model_input_size: Tuple[int, int],
                center: Tuple[int, int],
                scale: Tuple[int, int],
                simcc_split_ratio: float = 2.0
                ) -> Tuple[np.ndarray, np.ndarray]:
    """Postprocess for RTMPose model output.

    Args:
        outputs (np.ndarray): Output of RTMPose model.
        model_input_size (tuple): RTMPose model Input image size.
        center (tuple): Center of bbox in shape (x, y).
        scale (tuple): Scale of bbox in shape (w, h).
        simcc_split_ratio (float): Split ratio of simcc.

    Returns:
        tuple:
        - keypoints (np.ndarray): Rescaled keypoints.
        - scores (np.ndarray): Model predict scores.
    """
    all_key = []
    all_score = []
    for i in range(len(outputs)):
        # use simcc to decode
        simcc_x, simcc_y = outputs[i]
        keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)

        # rescale keypoints
        keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
        all_key.append(keypoints[0])
        all_score.append(scores[0])

    return np.array(all_key), np.array(all_score)


def bbox_xyxy2cs(bbox: np.ndarray,
                 padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
    """Transform the bbox format from (x,y,w,h) into (center, scale)

    Args:
        bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
            as (left, top, right, bottom)
        padding (float): BBox padding factor that will be multilied to scale.
            Default: 1.0

    Returns:
        tuple: A tuple containing center and scale.
        - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
            (n, 2)
        - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
            (n, 2)
    """
    # convert single bbox from (4, ) to (1, 4)
    dim = bbox.ndim
    if dim == 1:
        bbox = bbox[None, :]

    # get bbox center and scale
    x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
    center = np.hstack([x1 + x2, y1 + y2]) * 0.5
    scale = np.hstack([x2 - x1, y2 - y1]) * padding

    if dim == 1:
        center = center[0]
        scale = scale[0]

    return center, scale


def _fix_aspect_ratio(bbox_scale: np.ndarray,
                      aspect_ratio: float) -> np.ndarray:
    """Extend the scale to match the given aspect ratio.

    Args:
        scale (np.ndarray): The image scale (w, h) in shape (2, )
        aspect_ratio (float): The ratio of ``w/h``

    Returns:
        np.ndarray: The reshaped image scale in (2, )
    """
    w, h = np.hsplit(bbox_scale, [1])
    bbox_scale = np.where(w > h * aspect_ratio,
                          np.hstack([w, w / aspect_ratio]),
                          np.hstack([h * aspect_ratio, h]))
    return bbox_scale


def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
    """Rotate a point by an angle.

    Args:
        pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
        angle_rad (float): rotation angle in radian

    Returns:
        np.ndarray: Rotated point in shape (2, )
    """
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    rot_mat = np.array([[cs, -sn], [sn, cs]])
    return rot_mat @ pt


def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.

    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.

    Args:
        a (np.ndarray): The 1st point (x,y) in shape (2, )
        b (np.ndarray): The 2nd point (x,y) in shape (2, )

    Returns:
        np.ndarray: The 3rd point.
    """
    direction = a - b
    c = b + np.r_[-direction[1], direction[0]]
    return c


def get_warp_matrix(center: np.ndarray,
                    scale: np.ndarray,
                    rot: float,
                    output_size: Tuple[int, int],
                    shift: Tuple[float, float] = (0., 0.),
                    inv: bool = False) -> np.ndarray:
    """Calculate the affine transformation matrix that can warp the bbox area
    in the input image to the output size.

    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)

    Returns:
        np.ndarray: A 2x3 transformation matrix
    """
    shift = np.array(shift)
    src_w = scale[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    # compute transformation matrix
    rot_rad = np.deg2rad(rot)
    src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    # get four corners of the src rectangle in the original image
    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale * shift
    src[1, :] = center + src_dir + scale * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    # get four corners of the dst rectangle in the input image
    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return warp_mat


def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict,
                    img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    """Get the bbox image as the model input by affine transform.

    Args:
        input_size (dict): The input size of the model.
        bbox_scale (dict): The bbox scale of the img.
        bbox_center (dict): The bbox center of the img.
        img (np.ndarray): The original image.

    Returns:
        tuple: A tuple containing center and scale.
        - np.ndarray[float32]: img after affine transform.
        - np.ndarray[float32]: bbox scale after affine transform.
    """
    w, h = input_size
    warp_size = (int(w), int(h))

    # reshape bbox to fixed aspect ratio
    bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)

    # get the affine matrix
    center = bbox_center
    scale = bbox_scale
    rot = 0
    warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))

    # do affine transform
    img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)

    return img, bbox_scale


def get_simcc_maximum(simcc_x: np.ndarray,
                      simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    """Get maximum response location and value from simcc representations.

    Note:
        instance number: N
        num_keypoints: K
        heatmap height: H
        heatmap width: W

    Args:
        simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
        simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)

    Returns:
        tuple:
        - locs (np.ndarray): locations of maximum heatmap responses in shape
            (K, 2) or (N, K, 2)
        - vals (np.ndarray): values of maximum heatmap responses in shape
            (K,) or (N, K)
    """
    N, K, Wx = simcc_x.shape
    simcc_x = simcc_x.reshape(N * K, -1)
    simcc_y = simcc_y.reshape(N * K, -1)

    # get maximum value locations
    x_locs = np.argmax(simcc_x, axis=1)
    y_locs = np.argmax(simcc_y, axis=1)
    locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
    max_val_x = np.amax(simcc_x, axis=1)
    max_val_y = np.amax(simcc_y, axis=1)

    # get maximum value across x and y axis
    mask = max_val_x > max_val_y
    max_val_x[mask] = max_val_y[mask]
    vals = max_val_x
    locs[vals <= 0.] = -1

    # reshape
    locs = locs.reshape(N, K, 2)
    vals = vals.reshape(N, K)

    return locs, vals


def decode(simcc_x: np.ndarray, simcc_y: np.ndarray,
           simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
    """Modulate simcc distribution with Gaussian.

    Args:
        simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
        simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
        simcc_split_ratio (int): The split ratio of simcc.

    Returns:
        tuple: A tuple containing center and scale.
        - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
        - np.ndarray[float32]: scores in shape (K,) or (n, K)
    """
    keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
    keypoints /= simcc_split_ratio

    return keypoints, scores


def inference_pose(session, out_bbox, oriImg):
    """run pose detect 

    Args:
        session (ort.InferenceSession): ONNXRuntime session.
        out_bbox (np.ndarray): bbox list
        oriImg (np.ndarray): Input image in shape.

    Returns:
        tuple:
        - keypoints (np.ndarray): Rescaled keypoints.
        - scores (np.ndarray): Model predict scores.
    """
    h, w = session.get_inputs()[0].shape[2:]
    model_input_size = (w, h)
    # preprocess for rtm-pose model inference.
    resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
    # run pose estimation for processed img
    outputs = inference(session, resized_img)
    # postprocess for rtm-pose model output.
    keypoints, scores = postprocess(outputs, model_input_size, center, scale)

    return keypoints, scores