File size: 7,262 Bytes
46643d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import torch.nn as nn
from torch.optim import SGD, lr_scheduler
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import ImageFolder
from model import HNet, ResNet18
import config as CFG
from tqdm.auto import tqdm
from prettytable import PrettyTable
from argparse import ArgumentParser
from copy import deepcopy
from typing import Dict
import time
import logging
import sys
from data import transforms

# check is models folder exists
(CFG.BASE_PATH / "models").mkdir(exist_ok=True)


# Set up logger
logging.basicConfig(
    filename="train.log",
    format="%(asctime)s - %(levelname)s - %(message)s",
    level=logging.INFO,
    filemode="a",
)


best_acc = 0.0


def run_one_epoch(
    epoch: int,
    ds_sizes: Dict[str, int],
    dataloaders: Dict[str, DataLoader],
    model: nn.Module,
    optimizer: torch.optim.Optimizer,
    loss: nn.Module,
    scheduler: torch.optim.lr_scheduler,
):
    """
    Run one complete train-val loop

    Parameter
    ---------

    ds_sizes: Dictionary containing dataset sizes
    dataloaders: Dictionary containing dataloaders
    model: The model
    optimizer: The optimizer
    loss: The loss

    Returns
    -------

    metrics: Dictionary containing Train(loss/accuracy) &
             Validation(loss/accuracy)

    """
    global best_acc

    metrics = {}

    for phase in ["train", "val"]:
        logging.info(f"{phase.upper()} phase")

        if phase == "train":
            model.train()
        else:
            model.eval()

        avg_loss = 0
        running_corrects = 0

        for batch_idx, (images, labels) in enumerate(
            tqdm(dataloaders[phase], total=len(dataloaders[phase]))
        ):

            images = images.to(CFG.DEVICE)
            labels = labels.to(CFG.DEVICE)

            # Zero the gradients
            optimizer.zero_grad()

            # Track history if in phase == "train"
            with torch.set_grad_enabled(phase == "train"):
                outputs = model(images)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                if phase == "train":
                    loss.backward()
                    optimizer.step()

            avg_loss += loss.item() * images.size(0)
            running_corrects += torch.sum(preds == labels)

            if batch_idx % CFG.INTERVAL == 0:
                corrects = torch.sum(preds == labels)

                logging.info(
                    f"Epoch {epoch} - {phase.upper()} - Batch {batch_idx} - Loss = {round(loss.item(), 3)} | Accuracy = {100 * corrects/CFG.BATCH_SIZE}%"
                )

        epoch_loss = avg_loss / ds_sizes[phase]
        epoch_acc = running_corrects.double() / ds_sizes[phase]

        # step the scheduler
        if phase == "train":
            scheduler.step()

        # save best model wts
        if phase == "val" and epoch_acc > best_acc:
            best_acc = epoch_acc
            best_model_wts = deepcopy(model.state_dict())
            torch.save(best_model_wts, CFG.BEST_MODEL_PATH)

        # Metrics tracking
        if phase == "train":
            metrics["train_loss"] = round(epoch_loss, 3)
            metrics["train_acc"] = round(100 * epoch_acc.item(), 3)
        else:
            metrics["val_loss"] = round(epoch_loss, 3)
            metrics["val_acc"] = round(100 * epoch_acc.item(), 3)

    return metrics


def train(dataloaders, ds_sizes, model, optimizer, criterion, scheduler):
    for epoch in range(CFG.EPOCHS):

        start = time.time()

        metrics = run_one_epoch(
            epoch=epoch,
            ds_sizes=ds_sizes,
            dataloaders=dataloaders,
            model=model,
            optimizer=optimizer,
            loss=criterion,
            scheduler=scheduler,
        )

        end = time.time() - start

        print(f"Epoch completed in: {round(end/60, 3)} mins")

        table.add_row(
            row=[
                epoch + 1,
                metrics["train_loss"],
                metrics["train_acc"],
                metrics["val_loss"],
                metrics["val_acc"],
            ]
        )
        print(table)

    # Write results to file
    with open("results.txt", "w") as f:
        results = table.get_string()
        f.write(results)


if __name__ == "__main__":

    TRAIN_PATH, TEST_PATH, BEST_MODEL = "", "", ""

    parser = ArgumentParser(description="Train model for Hindi Character Recognition")
    parser.add_argument(
        "--epochs", type=int, help="number of epochs", default=CFG.EPOCHS
    )
    parser.add_argument("--lr", type=float, help="learning rate", default=CFG.LR)
    parser.add_argument(
        "--model_type",
        type=str,
        help="Type of model (vyanjan/digit)",
        default="vyanjan",
    )

    args = parser.parse_args()

    if args.model_type == "digit":
        model = HNet(num_classes=10)
        logging.info("Initialized Digit model")
        TRAIN_PATH = CFG.TRAIN_DIGIT_PATH
        CFG.BEST_MODEL_PATH = CFG.BEST_MODEL_DIGIT
    else:
        model = HNet(num_classes=36)
        logging.info("Initialized Vyanjan model")
        TRAIN_PATH = CFG.TRAIN_VYANJAN_PATH
        CFG.BEST_MODEL_PATH = CFG.BEST_MODEL_VYANJAN

    # creating the datasets
    train_ds = ImageFolder(root=TRAIN_PATH, transform=transforms["train"])

    # Train/val splitting
    lengths = [int(len(train_ds) * 0.8), len(train_ds) - int(len(train_ds) * 0.8)]
    train_ds, val_ds = random_split(dataset=train_ds, lengths=lengths)

    # creating the dataloaders
    train_dl = DataLoader(dataset=train_ds, batch_size=CFG.BATCH_SIZE, shuffle=True)
    val_dl = DataLoader(dataset=val_ds, batch_size=CFG.BATCH_SIZE)

    if len(sys.argv) > 1:
        CFG.EPOCHS = args.epochs
        CFG.LR = args.lr

    # table
    table = PrettyTable(
        field_names=["Epoch", "Train Loss", "Train Acc", "Val Loss", "Val Acc"]
    )

    # the model
    model.to(CFG.DEVICE)

    # Setting up optimizer and loss
    optimizer = SGD(model.parameters(), lr=CFG.LR)
    criterion = CrossEntropyLoss()

    scheduler = lr_scheduler.CyclicLR(
        optimizer=optimizer, base_lr=1e-5, max_lr=0.1, verbose=True
    )

    dataloaders = {"train": train_dl, "val": val_dl}
    ds_sizes = {"train": len(train_ds), "val": len(val_ds)}

    detail = f"""
    Training details: 
    ------------------------    
    Model: {model._get_name()}
    Model Type: {args.model_type}
    Epochs: {CFG.EPOCHS}
    Optimizer: {type(optimizer).__name__}
    Loss: {criterion._get_name()}
    Learning Rate: {CFG.LR}
    Learning Rate Scheduler: {scheduler.__str__()}
    Batch Size: {CFG.BATCH_SIZE}
    Logging Interval: {CFG.INTERVAL} batches
    Train-dataset samples: {len(train_ds)}
    Validation-dataset samples: {len(val_ds)} 
    -------------------------
    """

    print(detail)

    logging.info(detail)

    start_train = time.time()

    train(
        dataloaders=dataloaders,
        ds_sizes=ds_sizes,
        model=model,
        optimizer=optimizer,
        criterion=criterion,
        scheduler=scheduler,
    )

    end_train = time.time() - start_train

    print(f"Training completed in: {round(end_train/60, 3)} mins")