File size: 70,415 Bytes
46643d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
2023-01-04 19:33:16,533 - INFO - Initialized Vyanjan model
2023-01-04 19:33:16,941 - INFO - 
    Training details: 
    ------------------------    
    Model: HNet
    Model Type: vyanjan
    Epochs: 25
    Optimizer: SGD
    Loss: CrossEntropyLoss
    Learning Rate: 1e-05
    Learning Rate Scheduler: <torch.optim.lr_scheduler.CyclicLR object at 0x000001CF092DFBB0>
    Batch Size: 32
    Logging Interval: 100 batches
    Train-dataset samples: 48960
    Validation-dataset samples: 12240 
    -------------------------
    
2023-01-04 19:33:16,941 - INFO - TRAIN phase
2023-01-04 19:33:20,383 - INFO - Epoch 0 - TRAIN - Batch 0 - Loss = 3.615 | Accuracy = 0.0%
2023-01-04 19:33:27,344 - INFO - Epoch 0 - TRAIN - Batch 100 - Loss = 3.59 | Accuracy = 3.125%
2023-01-04 19:33:34,262 - INFO - Epoch 0 - TRAIN - Batch 200 - Loss = 3.56 | Accuracy = 0.0%
2023-01-04 19:33:40,938 - INFO - Epoch 0 - TRAIN - Batch 300 - Loss = 3.565 | Accuracy = 3.125%
2023-01-04 19:33:48,369 - INFO - Epoch 0 - TRAIN - Batch 400 - Loss = 3.544 | Accuracy = 6.25%
2023-01-04 19:33:54,067 - INFO - Epoch 0 - TRAIN - Batch 500 - Loss = 3.563 | Accuracy = 6.25%
2023-01-04 19:33:59,775 - INFO - Epoch 0 - TRAIN - Batch 600 - Loss = 3.501 | Accuracy = 6.25%
2023-01-04 19:34:05,646 - INFO - Epoch 0 - TRAIN - Batch 700 - Loss = 3.578 | Accuracy = 6.25%
2023-01-04 19:34:11,282 - INFO - Epoch 0 - TRAIN - Batch 800 - Loss = 3.557 | Accuracy = 6.25%
2023-01-04 19:34:16,849 - INFO - Epoch 0 - TRAIN - Batch 900 - Loss = 3.431 | Accuracy = 15.625%
2023-01-04 19:34:22,412 - INFO - Epoch 0 - TRAIN - Batch 1000 - Loss = 3.549 | Accuracy = 0.0%
2023-01-04 19:34:28,909 - INFO - Epoch 0 - TRAIN - Batch 1100 - Loss = 3.451 | Accuracy = 12.5%
2023-01-04 19:34:34,880 - INFO - Epoch 0 - TRAIN - Batch 1200 - Loss = 3.462 | Accuracy = 15.625%
2023-01-04 19:34:40,872 - INFO - Epoch 0 - TRAIN - Batch 1300 - Loss = 3.484 | Accuracy = 3.125%
2023-01-04 19:34:46,838 - INFO - Epoch 0 - TRAIN - Batch 1400 - Loss = 3.358 | Accuracy = 21.875%
2023-01-04 19:34:52,829 - INFO - Epoch 0 - TRAIN - Batch 1500 - Loss = 3.523 | Accuracy = 6.25%
2023-01-04 19:34:54,503 - INFO - VAL phase
2023-01-04 19:34:54,555 - INFO - Epoch 0 - VAL - Batch 0 - Loss = 3.409 | Accuracy = 18.75%
2023-01-04 19:34:59,772 - INFO - Epoch 0 - VAL - Batch 100 - Loss = 3.394 | Accuracy = 25.0%
2023-01-04 19:35:05,112 - INFO - Epoch 0 - VAL - Batch 200 - Loss = 3.371 | Accuracy = 25.0%
2023-01-04 19:35:10,557 - INFO - Epoch 0 - VAL - Batch 300 - Loss = 3.414 | Accuracy = 21.875%
2023-01-04 19:35:15,491 - INFO - TRAIN phase
2023-01-04 19:35:15,579 - INFO - Epoch 1 - TRAIN - Batch 0 - Loss = 3.438 | Accuracy = 6.25%
2023-01-04 19:35:21,124 - INFO - Epoch 1 - TRAIN - Batch 100 - Loss = 3.325 | Accuracy = 15.625%
2023-01-04 19:35:26,359 - INFO - Epoch 1 - TRAIN - Batch 200 - Loss = 3.205 | Accuracy = 18.75%
2023-01-04 19:35:31,512 - INFO - Epoch 1 - TRAIN - Batch 300 - Loss = 2.752 | Accuracy = 31.25%
2023-01-04 19:35:36,782 - INFO - Epoch 1 - TRAIN - Batch 400 - Loss = 3.006 | Accuracy = 15.625%
2023-01-04 19:35:42,040 - INFO - Epoch 1 - TRAIN - Batch 500 - Loss = 3.029 | Accuracy = 31.25%
2023-01-04 19:35:47,394 - INFO - Epoch 1 - TRAIN - Batch 600 - Loss = 2.374 | Accuracy = 31.25%
2023-01-04 19:35:52,839 - INFO - Epoch 1 - TRAIN - Batch 700 - Loss = 2.599 | Accuracy = 40.625%
2023-01-04 19:35:58,317 - INFO - Epoch 1 - TRAIN - Batch 800 - Loss = 2.36 | Accuracy = 43.75%
2023-01-04 19:36:04,365 - INFO - Epoch 1 - TRAIN - Batch 900 - Loss = 2.073 | Accuracy = 53.125%
2023-01-04 19:36:10,584 - INFO - Epoch 1 - TRAIN - Batch 1000 - Loss = 2.473 | Accuracy = 40.625%
2023-01-04 19:36:16,198 - INFO - Epoch 1 - TRAIN - Batch 1100 - Loss = 2.115 | Accuracy = 37.5%
2023-01-04 19:36:21,774 - INFO - Epoch 1 - TRAIN - Batch 1200 - Loss = 2.328 | Accuracy = 25.0%
2023-01-04 19:36:27,339 - INFO - Epoch 1 - TRAIN - Batch 1300 - Loss = 2.014 | Accuracy = 50.0%
2023-01-04 19:36:33,158 - INFO - Epoch 1 - TRAIN - Batch 1400 - Loss = 2.424 | Accuracy = 37.5%
2023-01-04 19:36:38,756 - INFO - Epoch 1 - TRAIN - Batch 1500 - Loss = 2.439 | Accuracy = 34.375%
2023-01-04 19:36:40,398 - INFO - VAL phase
2023-01-04 19:36:40,460 - INFO - Epoch 1 - VAL - Batch 0 - Loss = 1.982 | Accuracy = 56.25%
2023-01-04 19:36:45,360 - INFO - Epoch 1 - VAL - Batch 100 - Loss = 2.075 | Accuracy = 53.125%
2023-01-04 19:36:50,468 - INFO - Epoch 1 - VAL - Batch 200 - Loss = 2.045 | Accuracy = 43.75%
2023-01-04 19:36:55,596 - INFO - Epoch 1 - VAL - Batch 300 - Loss = 1.821 | Accuracy = 56.25%
2023-01-04 19:37:00,523 - INFO - TRAIN phase
2023-01-04 19:37:00,617 - INFO - Epoch 2 - TRAIN - Batch 0 - Loss = 2.278 | Accuracy = 40.625%
2023-01-04 19:37:05,838 - INFO - Epoch 2 - TRAIN - Batch 100 - Loss = 2.042 | Accuracy = 40.625%
2023-01-04 19:37:11,034 - INFO - Epoch 2 - TRAIN - Batch 200 - Loss = 2.163 | Accuracy = 43.75%
2023-01-04 19:37:16,438 - INFO - Epoch 2 - TRAIN - Batch 300 - Loss = 2.02 | Accuracy = 46.875%
2023-01-04 19:37:21,768 - INFO - Epoch 2 - TRAIN - Batch 400 - Loss = 2.326 | Accuracy = 37.5%
2023-01-04 19:37:27,130 - INFO - Epoch 2 - TRAIN - Batch 500 - Loss = 1.813 | Accuracy = 46.875%
2023-01-04 19:37:32,821 - INFO - Epoch 2 - TRAIN - Batch 600 - Loss = 2.403 | Accuracy = 31.25%
2023-01-04 19:37:38,150 - INFO - Epoch 2 - TRAIN - Batch 700 - Loss = 2.047 | Accuracy = 34.375%
2023-01-04 19:37:43,654 - INFO - Epoch 2 - TRAIN - Batch 800 - Loss = 2.25 | Accuracy = 34.375%
2023-01-04 19:37:50,078 - INFO - Epoch 2 - TRAIN - Batch 900 - Loss = 2.337 | Accuracy = 53.125%
2023-01-04 19:37:56,346 - INFO - Epoch 2 - TRAIN - Batch 1000 - Loss = 1.726 | Accuracy = 56.25%
2023-01-04 19:38:02,813 - INFO - Epoch 2 - TRAIN - Batch 1100 - Loss = 1.781 | Accuracy = 46.875%
2023-01-04 19:38:09,074 - INFO - Epoch 2 - TRAIN - Batch 1200 - Loss = 1.839 | Accuracy = 50.0%
2023-01-04 19:38:15,410 - INFO - Epoch 2 - TRAIN - Batch 1300 - Loss = 1.916 | Accuracy = 37.5%
2023-01-04 19:38:21,859 - INFO - Epoch 2 - TRAIN - Batch 1400 - Loss = 1.622 | Accuracy = 56.25%
2023-01-04 19:38:28,203 - INFO - Epoch 2 - TRAIN - Batch 1500 - Loss = 1.749 | Accuracy = 56.25%
2023-01-04 19:38:30,047 - INFO - VAL phase
2023-01-04 19:38:30,095 - INFO - Epoch 2 - VAL - Batch 0 - Loss = 1.096 | Accuracy = 68.75%
2023-01-04 19:38:35,774 - INFO - Epoch 2 - VAL - Batch 100 - Loss = 1.424 | Accuracy = 65.625%
2023-01-04 19:38:41,225 - INFO - Epoch 2 - VAL - Batch 200 - Loss = 1.408 | Accuracy = 65.625%
2023-01-04 19:38:46,612 - INFO - Epoch 2 - VAL - Batch 300 - Loss = 1.352 | Accuracy = 65.625%
2023-01-04 19:38:50,972 - INFO - TRAIN phase
2023-01-04 19:38:51,055 - INFO - Epoch 3 - TRAIN - Batch 0 - Loss = 1.808 | Accuracy = 62.5%
2023-01-04 19:38:57,388 - INFO - Epoch 3 - TRAIN - Batch 100 - Loss = 1.563 | Accuracy = 53.125%
2023-01-04 19:39:03,760 - INFO - Epoch 3 - TRAIN - Batch 200 - Loss = 1.307 | Accuracy = 68.75%
2023-01-04 19:39:10,061 - INFO - Epoch 3 - TRAIN - Batch 300 - Loss = 1.568 | Accuracy = 71.875%
2023-01-04 19:39:16,445 - INFO - Epoch 3 - TRAIN - Batch 400 - Loss = 1.469 | Accuracy = 53.125%
2023-01-04 19:39:22,819 - INFO - Epoch 3 - TRAIN - Batch 500 - Loss = 1.649 | Accuracy = 53.125%
2023-01-04 19:39:29,127 - INFO - Epoch 3 - TRAIN - Batch 600 - Loss = 1.491 | Accuracy = 53.125%
2023-01-04 19:39:35,415 - INFO - Epoch 3 - TRAIN - Batch 700 - Loss = 1.361 | Accuracy = 59.375%
2023-01-04 19:39:41,153 - INFO - Epoch 3 - TRAIN - Batch 800 - Loss = 1.33 | Accuracy = 56.25%
2023-01-04 19:39:46,749 - INFO - Epoch 3 - TRAIN - Batch 900 - Loss = 1.02 | Accuracy = 81.25%
2023-01-04 19:39:52,384 - INFO - Epoch 3 - TRAIN - Batch 1000 - Loss = 1.58 | Accuracy = 59.375%
2023-01-04 19:39:57,956 - INFO - Epoch 3 - TRAIN - Batch 1100 - Loss = 2.078 | Accuracy = 59.375%
2023-01-04 19:40:03,543 - INFO - Epoch 3 - TRAIN - Batch 1200 - Loss = 1.424 | Accuracy = 53.125%
2023-01-04 19:40:09,226 - INFO - Epoch 3 - TRAIN - Batch 1300 - Loss = 1.392 | Accuracy = 59.375%
2023-01-04 19:40:14,731 - INFO - Epoch 3 - TRAIN - Batch 1400 - Loss = 0.968 | Accuracy = 75.0%
2023-01-04 19:40:19,920 - INFO - Epoch 3 - TRAIN - Batch 1500 - Loss = 1.25 | Accuracy = 56.25%
2023-01-04 19:40:21,480 - INFO - VAL phase
2023-01-04 19:40:21,536 - INFO - Epoch 3 - VAL - Batch 0 - Loss = 0.921 | Accuracy = 75.0%
2023-01-04 19:40:26,390 - INFO - Epoch 3 - VAL - Batch 100 - Loss = 0.985 | Accuracy = 71.875%
2023-01-04 19:40:31,189 - INFO - Epoch 3 - VAL - Batch 200 - Loss = 0.977 | Accuracy = 68.75%
2023-01-04 19:40:36,009 - INFO - Epoch 3 - VAL - Batch 300 - Loss = 1.465 | Accuracy = 71.875%
2023-01-04 19:40:40,481 - INFO - TRAIN phase
2023-01-04 19:40:40,546 - INFO - Epoch 4 - TRAIN - Batch 0 - Loss = 1.262 | Accuracy = 62.5%
2023-01-04 19:40:45,767 - INFO - Epoch 4 - TRAIN - Batch 100 - Loss = 1.136 | Accuracy = 68.75%
2023-01-04 19:40:50,935 - INFO - Epoch 4 - TRAIN - Batch 200 - Loss = 1.134 | Accuracy = 75.0%
2023-01-04 19:40:56,294 - INFO - Epoch 4 - TRAIN - Batch 300 - Loss = 0.741 | Accuracy = 78.125%
2023-01-04 19:41:02,639 - INFO - Epoch 4 - TRAIN - Batch 400 - Loss = 0.86 | Accuracy = 68.75%
2023-01-04 19:41:09,016 - INFO - Epoch 4 - TRAIN - Batch 500 - Loss = 1.078 | Accuracy = 75.0%
2023-01-04 19:41:15,273 - INFO - Epoch 4 - TRAIN - Batch 600 - Loss = 1.392 | Accuracy = 65.625%
2023-01-04 19:41:21,554 - INFO - Epoch 4 - TRAIN - Batch 700 - Loss = 1.31 | Accuracy = 62.5%
2023-01-04 19:41:27,844 - INFO - Epoch 4 - TRAIN - Batch 800 - Loss = 1.666 | Accuracy = 53.125%
2023-01-04 19:41:34,187 - INFO - Epoch 4 - TRAIN - Batch 900 - Loss = 1.209 | Accuracy = 65.625%
2023-01-04 19:41:39,966 - INFO - Epoch 4 - TRAIN - Batch 1000 - Loss = 0.648 | Accuracy = 78.125%
2023-01-04 19:41:45,129 - INFO - Epoch 4 - TRAIN - Batch 1100 - Loss = 1.591 | Accuracy = 65.625%
2023-01-04 19:41:50,242 - INFO - Epoch 4 - TRAIN - Batch 1200 - Loss = 1.629 | Accuracy = 62.5%
2023-01-04 19:41:55,994 - INFO - Epoch 4 - TRAIN - Batch 1300 - Loss = 0.962 | Accuracy = 71.875%
2023-01-04 19:42:01,280 - INFO - Epoch 4 - TRAIN - Batch 1400 - Loss = 0.659 | Accuracy = 81.25%
2023-01-04 19:42:06,399 - INFO - Epoch 4 - TRAIN - Batch 1500 - Loss = 1.094 | Accuracy = 75.0%
2023-01-04 19:42:07,856 - INFO - VAL phase
2023-01-04 19:42:07,910 - INFO - Epoch 4 - VAL - Batch 0 - Loss = 0.844 | Accuracy = 78.125%
2023-01-04 19:42:12,442 - INFO - Epoch 4 - VAL - Batch 100 - Loss = 0.505 | Accuracy = 90.625%
2023-01-04 19:42:17,030 - INFO - Epoch 4 - VAL - Batch 200 - Loss = 0.777 | Accuracy = 84.375%
2023-01-04 19:42:21,709 - INFO - Epoch 4 - VAL - Batch 300 - Loss = 1.008 | Accuracy = 75.0%
2023-01-04 19:42:25,396 - INFO - TRAIN phase
2023-01-04 19:42:25,452 - INFO - Epoch 5 - TRAIN - Batch 0 - Loss = 1.183 | Accuracy = 75.0%
2023-01-04 19:42:31,740 - INFO - Epoch 5 - TRAIN - Batch 100 - Loss = 1.097 | Accuracy = 59.375%
2023-01-04 19:42:38,456 - INFO - Epoch 5 - TRAIN - Batch 200 - Loss = 0.829 | Accuracy = 75.0%
2023-01-04 19:42:43,478 - INFO - Epoch 5 - TRAIN - Batch 300 - Loss = 0.677 | Accuracy = 81.25%
2023-01-04 19:42:49,302 - INFO - Epoch 5 - TRAIN - Batch 400 - Loss = 0.627 | Accuracy = 75.0%
2023-01-04 19:42:55,197 - INFO - Epoch 5 - TRAIN - Batch 500 - Loss = 0.948 | Accuracy = 68.75%
2023-01-04 19:43:01,115 - INFO - Epoch 5 - TRAIN - Batch 600 - Loss = 0.95 | Accuracy = 78.125%
2023-01-04 19:43:06,903 - INFO - Epoch 5 - TRAIN - Batch 700 - Loss = 0.954 | Accuracy = 68.75%
2023-01-04 19:43:12,785 - INFO - Epoch 5 - TRAIN - Batch 800 - Loss = 1.184 | Accuracy = 65.625%
2023-01-04 19:43:18,643 - INFO - Epoch 5 - TRAIN - Batch 900 - Loss = 0.988 | Accuracy = 71.875%
2023-01-04 19:43:24,429 - INFO - Epoch 5 - TRAIN - Batch 1000 - Loss = 1.183 | Accuracy = 71.875%
2023-01-04 19:43:30,191 - INFO - Epoch 5 - TRAIN - Batch 1100 - Loss = 0.93 | Accuracy = 78.125%
2023-01-04 19:43:35,958 - INFO - Epoch 5 - TRAIN - Batch 1200 - Loss = 0.962 | Accuracy = 78.125%
2023-01-04 19:43:41,192 - INFO - Epoch 5 - TRAIN - Batch 1300 - Loss = 0.708 | Accuracy = 84.375%
2023-01-04 19:43:46,332 - INFO - Epoch 5 - TRAIN - Batch 1400 - Loss = 1.221 | Accuracy = 62.5%
2023-01-04 19:43:51,431 - INFO - Epoch 5 - TRAIN - Batch 1500 - Loss = 0.544 | Accuracy = 90.625%
2023-01-04 19:43:52,925 - INFO - VAL phase
2023-01-04 19:43:52,980 - INFO - Epoch 5 - VAL - Batch 0 - Loss = 0.754 | Accuracy = 78.125%
2023-01-04 19:43:57,552 - INFO - Epoch 5 - VAL - Batch 100 - Loss = 0.847 | Accuracy = 81.25%
2023-01-04 19:44:02,196 - INFO - Epoch 5 - VAL - Batch 200 - Loss = 0.494 | Accuracy = 90.625%
2023-01-04 19:44:06,815 - INFO - Epoch 5 - VAL - Batch 300 - Loss = 0.834 | Accuracy = 81.25%
2023-01-04 19:44:10,651 - INFO - TRAIN phase
2023-01-04 19:44:10,715 - INFO - Epoch 6 - TRAIN - Batch 0 - Loss = 1.152 | Accuracy = 75.0%
2023-01-04 19:44:15,833 - INFO - Epoch 6 - TRAIN - Batch 100 - Loss = 0.881 | Accuracy = 78.125%
2023-01-04 19:44:21,132 - INFO - Epoch 6 - TRAIN - Batch 200 - Loss = 0.746 | Accuracy = 87.5%
2023-01-04 19:44:26,648 - INFO - Epoch 6 - TRAIN - Batch 300 - Loss = 1.079 | Accuracy = 68.75%
2023-01-04 19:44:31,929 - INFO - Epoch 6 - TRAIN - Batch 400 - Loss = 0.847 | Accuracy = 71.875%
2023-01-04 19:44:36,890 - INFO - Epoch 6 - TRAIN - Batch 500 - Loss = 1.356 | Accuracy = 71.875%
2023-01-04 19:44:42,116 - INFO - Epoch 6 - TRAIN - Batch 600 - Loss = 0.871 | Accuracy = 81.25%
2023-01-04 19:44:47,409 - INFO - Epoch 6 - TRAIN - Batch 700 - Loss = 0.86 | Accuracy = 75.0%
2023-01-04 19:44:52,559 - INFO - Epoch 6 - TRAIN - Batch 800 - Loss = 1.288 | Accuracy = 75.0%
2023-01-04 19:44:57,801 - INFO - Epoch 6 - TRAIN - Batch 900 - Loss = 0.81 | Accuracy = 75.0%
2023-01-04 19:45:02,945 - INFO - Epoch 6 - TRAIN - Batch 1000 - Loss = 0.384 | Accuracy = 93.75%
2023-01-04 19:45:08,129 - INFO - Epoch 6 - TRAIN - Batch 1100 - Loss = 0.543 | Accuracy = 84.375%
2023-01-04 19:45:13,513 - INFO - Epoch 6 - TRAIN - Batch 1200 - Loss = 0.771 | Accuracy = 75.0%
2023-01-04 19:45:18,258 - INFO - Epoch 6 - TRAIN - Batch 1300 - Loss = 0.513 | Accuracy = 81.25%
2023-01-04 19:45:23,168 - INFO - Epoch 6 - TRAIN - Batch 1400 - Loss = 0.529 | Accuracy = 81.25%
2023-01-04 19:45:27,974 - INFO - Epoch 6 - TRAIN - Batch 1500 - Loss = 0.933 | Accuracy = 62.5%
2023-01-04 19:45:29,389 - INFO - VAL phase
2023-01-04 19:45:29,437 - INFO - Epoch 6 - VAL - Batch 0 - Loss = 0.462 | Accuracy = 87.5%
2023-01-04 19:45:33,999 - INFO - Epoch 6 - VAL - Batch 100 - Loss = 0.638 | Accuracy = 84.375%
2023-01-04 19:45:38,585 - INFO - Epoch 6 - VAL - Batch 200 - Loss = 0.694 | Accuracy = 87.5%
2023-01-04 19:45:43,069 - INFO - Epoch 6 - VAL - Batch 300 - Loss = 1.131 | Accuracy = 78.125%
2023-01-04 19:45:46,779 - INFO - TRAIN phase
2023-01-04 19:45:46,844 - INFO - Epoch 7 - TRAIN - Batch 0 - Loss = 0.778 | Accuracy = 81.25%
2023-01-04 19:45:51,791 - INFO - Epoch 7 - TRAIN - Batch 100 - Loss = 0.566 | Accuracy = 81.25%
2023-01-04 19:45:56,791 - INFO - Epoch 7 - TRAIN - Batch 200 - Loss = 0.641 | Accuracy = 84.375%
2023-01-04 19:46:02,205 - INFO - Epoch 7 - TRAIN - Batch 300 - Loss = 0.878 | Accuracy = 71.875%
2023-01-04 19:46:07,606 - INFO - Epoch 7 - TRAIN - Batch 400 - Loss = 0.564 | Accuracy = 87.5%
2023-01-04 19:46:12,888 - INFO - Epoch 7 - TRAIN - Batch 500 - Loss = 0.436 | Accuracy = 90.625%
2023-01-04 19:46:18,108 - INFO - Epoch 7 - TRAIN - Batch 600 - Loss = 0.62 | Accuracy = 75.0%
2023-01-04 19:46:23,226 - INFO - Epoch 7 - TRAIN - Batch 700 - Loss = 0.852 | Accuracy = 71.875%
2023-01-04 19:46:28,410 - INFO - Epoch 7 - TRAIN - Batch 800 - Loss = 0.644 | Accuracy = 84.375%
2023-01-04 19:46:33,702 - INFO - Epoch 7 - TRAIN - Batch 900 - Loss = 0.578 | Accuracy = 90.625%
2023-01-04 19:46:38,817 - INFO - Epoch 7 - TRAIN - Batch 1000 - Loss = 0.489 | Accuracy = 87.5%
2023-01-04 19:46:43,961 - INFO - Epoch 7 - TRAIN - Batch 1100 - Loss = 0.793 | Accuracy = 81.25%
2023-01-04 19:46:49,276 - INFO - Epoch 7 - TRAIN - Batch 1200 - Loss = 0.691 | Accuracy = 75.0%
2023-01-04 19:46:55,296 - INFO - Epoch 7 - TRAIN - Batch 1300 - Loss = 0.893 | Accuracy = 75.0%
2023-01-04 19:47:01,138 - INFO - Epoch 7 - TRAIN - Batch 1400 - Loss = 0.585 | Accuracy = 87.5%
2023-01-04 19:47:07,054 - INFO - Epoch 7 - TRAIN - Batch 1500 - Loss = 0.685 | Accuracy = 78.125%
2023-01-04 19:47:08,768 - INFO - VAL phase
2023-01-04 19:47:08,817 - INFO - Epoch 7 - VAL - Batch 0 - Loss = 0.43 | Accuracy = 90.625%
2023-01-04 19:47:13,632 - INFO - Epoch 7 - VAL - Batch 100 - Loss = 0.309 | Accuracy = 84.375%
2023-01-04 19:47:18,430 - INFO - Epoch 7 - VAL - Batch 200 - Loss = 0.922 | Accuracy = 78.125%
2023-01-04 19:47:23,395 - INFO - Epoch 7 - VAL - Batch 300 - Loss = 1.166 | Accuracy = 78.125%
2023-01-04 19:47:27,289 - INFO - TRAIN phase
2023-01-04 19:47:27,356 - INFO - Epoch 8 - TRAIN - Batch 0 - Loss = 0.755 | Accuracy = 75.0%
2023-01-04 19:47:33,255 - INFO - Epoch 8 - TRAIN - Batch 100 - Loss = 0.425 | Accuracy = 87.5%
2023-01-04 19:47:38,904 - INFO - Epoch 8 - TRAIN - Batch 200 - Loss = 1.032 | Accuracy = 78.125%
2023-01-04 19:47:43,846 - INFO - Epoch 8 - TRAIN - Batch 300 - Loss = 0.631 | Accuracy = 90.625%
2023-01-04 19:47:48,774 - INFO - Epoch 8 - TRAIN - Batch 400 - Loss = 0.156 | Accuracy = 96.875%
2023-01-04 19:47:53,548 - INFO - Epoch 8 - TRAIN - Batch 500 - Loss = 0.682 | Accuracy = 84.375%
2023-01-04 19:47:58,456 - INFO - Epoch 8 - TRAIN - Batch 600 - Loss = 0.715 | Accuracy = 81.25%
2023-01-04 19:48:03,401 - INFO - Epoch 8 - TRAIN - Batch 700 - Loss = 0.565 | Accuracy = 84.375%
2023-01-04 19:48:08,243 - INFO - Epoch 8 - TRAIN - Batch 800 - Loss = 0.678 | Accuracy = 81.25%
2023-01-04 19:48:13,054 - INFO - Epoch 8 - TRAIN - Batch 900 - Loss = 0.655 | Accuracy = 84.375%
2023-01-04 19:48:17,810 - INFO - Epoch 8 - TRAIN - Batch 1000 - Loss = 0.886 | Accuracy = 78.125%
2023-01-04 19:48:22,705 - INFO - Epoch 8 - TRAIN - Batch 1100 - Loss = 0.575 | Accuracy = 81.25%
2023-01-04 19:48:30,540 - INFO - Epoch 8 - TRAIN - Batch 1200 - Loss = 0.305 | Accuracy = 93.75%
2023-01-04 19:48:36,577 - INFO - Epoch 8 - TRAIN - Batch 1300 - Loss = 0.483 | Accuracy = 87.5%
2023-01-04 19:48:42,431 - INFO - Epoch 8 - TRAIN - Batch 1400 - Loss = 0.742 | Accuracy = 75.0%
2023-01-04 19:48:48,327 - INFO - Epoch 8 - TRAIN - Batch 1500 - Loss = 0.596 | Accuracy = 87.5%
2023-01-04 19:48:50,041 - INFO - VAL phase
2023-01-04 19:48:50,099 - INFO - Epoch 8 - VAL - Batch 0 - Loss = 0.393 | Accuracy = 87.5%
2023-01-04 19:48:54,842 - INFO - Epoch 8 - VAL - Batch 100 - Loss = 0.592 | Accuracy = 87.5%
2023-01-04 19:48:59,673 - INFO - Epoch 8 - VAL - Batch 200 - Loss = 0.562 | Accuracy = 75.0%
2023-01-04 19:49:04,524 - INFO - Epoch 8 - VAL - Batch 300 - Loss = 0.664 | Accuracy = 81.25%
2023-01-04 19:49:08,402 - INFO - TRAIN phase
2023-01-04 19:49:08,474 - INFO - Epoch 9 - TRAIN - Batch 0 - Loss = 0.953 | Accuracy = 75.0%
2023-01-04 19:49:14,483 - INFO - Epoch 9 - TRAIN - Batch 100 - Loss = 0.654 | Accuracy = 78.125%
2023-01-04 19:49:19,713 - INFO - Epoch 9 - TRAIN - Batch 200 - Loss = 0.553 | Accuracy = 81.25%
2023-01-04 19:49:24,910 - INFO - Epoch 9 - TRAIN - Batch 300 - Loss = 0.626 | Accuracy = 75.0%
2023-01-04 19:49:30,051 - INFO - Epoch 9 - TRAIN - Batch 400 - Loss = 0.567 | Accuracy = 81.25%
2023-01-04 19:49:35,285 - INFO - Epoch 9 - TRAIN - Batch 500 - Loss = 0.393 | Accuracy = 84.375%
2023-01-04 19:49:40,450 - INFO - Epoch 9 - TRAIN - Batch 600 - Loss = 0.474 | Accuracy = 87.5%
2023-01-04 19:49:45,636 - INFO - Epoch 9 - TRAIN - Batch 700 - Loss = 0.785 | Accuracy = 81.25%
2023-01-04 19:49:50,861 - INFO - Epoch 9 - TRAIN - Batch 800 - Loss = 0.33 | Accuracy = 90.625%
2023-01-04 19:49:56,072 - INFO - Epoch 9 - TRAIN - Batch 900 - Loss = 0.316 | Accuracy = 93.75%
2023-01-04 19:50:01,372 - INFO - Epoch 9 - TRAIN - Batch 1000 - Loss = 0.602 | Accuracy = 78.125%
2023-01-04 19:50:07,322 - INFO - Epoch 9 - TRAIN - Batch 1100 - Loss = 0.899 | Accuracy = 78.125%
2023-01-04 19:50:13,058 - INFO - Epoch 9 - TRAIN - Batch 1200 - Loss = 0.701 | Accuracy = 75.0%
2023-01-04 19:50:18,940 - INFO - Epoch 9 - TRAIN - Batch 1300 - Loss = 0.694 | Accuracy = 75.0%
2023-01-04 19:50:24,830 - INFO - Epoch 9 - TRAIN - Batch 1400 - Loss = 0.567 | Accuracy = 81.25%
2023-01-04 19:50:30,526 - INFO - Epoch 9 - TRAIN - Batch 1500 - Loss = 0.472 | Accuracy = 87.5%
2023-01-04 19:50:32,252 - INFO - VAL phase
2023-01-04 19:50:32,303 - INFO - Epoch 9 - VAL - Batch 0 - Loss = 0.363 | Accuracy = 90.625%
2023-01-04 19:50:37,046 - INFO - Epoch 9 - VAL - Batch 100 - Loss = 0.347 | Accuracy = 90.625%
2023-01-04 19:50:41,807 - INFO - Epoch 9 - VAL - Batch 200 - Loss = 0.56 | Accuracy = 87.5%
2023-01-04 19:50:46,613 - INFO - Epoch 9 - VAL - Batch 300 - Loss = 0.696 | Accuracy = 78.125%
2023-01-04 19:50:50,779 - INFO - TRAIN phase
2023-01-04 19:50:50,885 - INFO - Epoch 10 - TRAIN - Batch 0 - Loss = 0.618 | Accuracy = 87.5%
2023-01-04 19:50:56,980 - INFO - Epoch 10 - TRAIN - Batch 100 - Loss = 0.357 | Accuracy = 87.5%
2023-01-04 19:51:02,917 - INFO - Epoch 10 - TRAIN - Batch 200 - Loss = 0.95 | Accuracy = 71.875%
2023-01-04 19:51:08,706 - INFO - Epoch 10 - TRAIN - Batch 300 - Loss = 0.41 | Accuracy = 87.5%
2023-01-04 19:51:14,627 - INFO - Epoch 10 - TRAIN - Batch 400 - Loss = 0.334 | Accuracy = 90.625%
2023-01-04 19:51:20,537 - INFO - Epoch 10 - TRAIN - Batch 500 - Loss = 0.707 | Accuracy = 84.375%
2023-01-04 19:51:26,354 - INFO - Epoch 10 - TRAIN - Batch 600 - Loss = 0.599 | Accuracy = 81.25%
2023-01-04 19:51:32,134 - INFO - Epoch 10 - TRAIN - Batch 700 - Loss = 0.691 | Accuracy = 90.625%
2023-01-04 19:51:38,093 - INFO - Epoch 10 - TRAIN - Batch 800 - Loss = 0.601 | Accuracy = 81.25%
2023-01-04 19:51:43,944 - INFO - Epoch 10 - TRAIN - Batch 900 - Loss = 0.623 | Accuracy = 81.25%
2023-01-04 19:51:49,707 - INFO - Epoch 10 - TRAIN - Batch 1000 - Loss = 0.548 | Accuracy = 87.5%
2023-01-04 19:51:55,506 - INFO - Epoch 10 - TRAIN - Batch 1100 - Loss = 0.723 | Accuracy = 81.25%
2023-01-04 19:52:01,336 - INFO - Epoch 10 - TRAIN - Batch 1200 - Loss = 0.414 | Accuracy = 87.5%
2023-01-04 19:52:07,155 - INFO - Epoch 10 - TRAIN - Batch 1300 - Loss = 0.289 | Accuracy = 90.625%
2023-01-04 19:52:12,905 - INFO - Epoch 10 - TRAIN - Batch 1400 - Loss = 0.899 | Accuracy = 81.25%
2023-01-04 19:52:18,736 - INFO - Epoch 10 - TRAIN - Batch 1500 - Loss = 0.601 | Accuracy = 81.25%
2023-01-04 19:52:20,566 - INFO - VAL phase
2023-01-04 19:52:20,619 - INFO - Epoch 10 - VAL - Batch 0 - Loss = 0.529 | Accuracy = 81.25%
2023-01-04 19:52:25,409 - INFO - Epoch 10 - VAL - Batch 100 - Loss = 0.501 | Accuracy = 90.625%
2023-01-04 19:52:30,140 - INFO - Epoch 10 - VAL - Batch 200 - Loss = 0.475 | Accuracy = 84.375%
2023-01-04 19:52:34,901 - INFO - Epoch 10 - VAL - Batch 300 - Loss = 0.709 | Accuracy = 87.5%
2023-01-04 19:52:38,739 - INFO - TRAIN phase
2023-01-04 19:52:38,803 - INFO - Epoch 11 - TRAIN - Batch 0 - Loss = 0.694 | Accuracy = 75.0%
2023-01-04 19:52:44,632 - INFO - Epoch 11 - TRAIN - Batch 100 - Loss = 0.437 | Accuracy = 90.625%
2023-01-04 19:52:50,480 - INFO - Epoch 11 - TRAIN - Batch 200 - Loss = 0.686 | Accuracy = 78.125%
2023-01-04 19:52:56,310 - INFO - Epoch 11 - TRAIN - Batch 300 - Loss = 0.339 | Accuracy = 90.625%
2023-01-04 19:53:02,246 - INFO - Epoch 11 - TRAIN - Batch 400 - Loss = 0.285 | Accuracy = 90.625%
2023-01-04 19:53:08,054 - INFO - Epoch 11 - TRAIN - Batch 500 - Loss = 0.521 | Accuracy = 81.25%
2023-01-04 19:53:13,233 - INFO - Epoch 11 - TRAIN - Batch 600 - Loss = 0.77 | Accuracy = 81.25%
2023-01-04 19:53:18,358 - INFO - Epoch 11 - TRAIN - Batch 700 - Loss = 0.49 | Accuracy = 84.375%
2023-01-04 19:53:23,551 - INFO - Epoch 11 - TRAIN - Batch 800 - Loss = 0.622 | Accuracy = 75.0%
2023-01-04 19:53:28,708 - INFO - Epoch 11 - TRAIN - Batch 900 - Loss = 0.764 | Accuracy = 78.125%
2023-01-04 19:53:33,935 - INFO - Epoch 11 - TRAIN - Batch 1000 - Loss = 0.505 | Accuracy = 84.375%
2023-01-04 19:53:39,104 - INFO - Epoch 11 - TRAIN - Batch 1100 - Loss = 0.761 | Accuracy = 84.375%
2023-01-04 19:53:44,373 - INFO - Epoch 11 - TRAIN - Batch 1200 - Loss = 0.484 | Accuracy = 84.375%
2023-01-04 19:53:49,531 - INFO - Epoch 11 - TRAIN - Batch 1300 - Loss = 0.403 | Accuracy = 90.625%
2023-01-04 19:53:55,216 - INFO - Epoch 11 - TRAIN - Batch 1400 - Loss = 0.495 | Accuracy = 93.75%
2023-01-04 19:54:01,069 - INFO - Epoch 11 - TRAIN - Batch 1500 - Loss = 0.208 | Accuracy = 93.75%
2023-01-04 19:54:02,783 - INFO - VAL phase
2023-01-04 19:54:02,833 - INFO - Epoch 11 - VAL - Batch 0 - Loss = 0.631 | Accuracy = 84.375%
2023-01-04 19:54:07,766 - INFO - Epoch 11 - VAL - Batch 100 - Loss = 0.289 | Accuracy = 90.625%
2023-01-04 19:54:12,635 - INFO - Epoch 11 - VAL - Batch 200 - Loss = 0.332 | Accuracy = 90.625%
2023-01-04 19:54:17,467 - INFO - Epoch 11 - VAL - Batch 300 - Loss = 0.493 | Accuracy = 84.375%
2023-01-04 19:54:21,397 - INFO - TRAIN phase
2023-01-04 19:54:21,463 - INFO - Epoch 12 - TRAIN - Batch 0 - Loss = 0.319 | Accuracy = 90.625%
2023-01-04 19:54:27,223 - INFO - Epoch 12 - TRAIN - Batch 100 - Loss = 0.383 | Accuracy = 93.75%
2023-01-04 19:54:33,062 - INFO - Epoch 12 - TRAIN - Batch 200 - Loss = 0.137 | Accuracy = 96.875%
2023-01-04 19:54:38,810 - INFO - Epoch 12 - TRAIN - Batch 300 - Loss = 0.349 | Accuracy = 93.75%
2023-01-04 19:54:44,666 - INFO - Epoch 12 - TRAIN - Batch 400 - Loss = 0.211 | Accuracy = 93.75%
2023-01-04 19:54:50,546 - INFO - Epoch 12 - TRAIN - Batch 500 - Loss = 0.328 | Accuracy = 87.5%
2023-01-04 19:54:56,409 - INFO - Epoch 12 - TRAIN - Batch 600 - Loss = 0.162 | Accuracy = 96.875%
2023-01-04 19:55:02,289 - INFO - Epoch 12 - TRAIN - Batch 700 - Loss = 0.819 | Accuracy = 81.25%
2023-01-04 19:55:08,123 - INFO - Epoch 12 - TRAIN - Batch 800 - Loss = 0.53 | Accuracy = 90.625%
2023-01-04 19:55:13,984 - INFO - Epoch 12 - TRAIN - Batch 900 - Loss = 0.781 | Accuracy = 81.25%
2023-01-04 19:55:19,892 - INFO - Epoch 12 - TRAIN - Batch 1000 - Loss = 0.797 | Accuracy = 78.125%
2023-01-04 19:55:25,760 - INFO - Epoch 12 - TRAIN - Batch 1100 - Loss = 0.525 | Accuracy = 87.5%
2023-01-04 19:55:31,283 - INFO - Epoch 12 - TRAIN - Batch 1200 - Loss = 0.379 | Accuracy = 90.625%
2023-01-04 19:55:36,479 - INFO - Epoch 12 - TRAIN - Batch 1300 - Loss = 0.711 | Accuracy = 84.375%
2023-01-04 19:55:41,686 - INFO - Epoch 12 - TRAIN - Batch 1400 - Loss = 0.222 | Accuracy = 90.625%
2023-01-04 19:55:46,951 - INFO - Epoch 12 - TRAIN - Batch 1500 - Loss = 0.486 | Accuracy = 84.375%
2023-01-04 19:55:48,440 - INFO - VAL phase
2023-01-04 19:55:48,489 - INFO - Epoch 12 - VAL - Batch 0 - Loss = 0.244 | Accuracy = 90.625%
2023-01-04 19:55:53,070 - INFO - Epoch 12 - VAL - Batch 100 - Loss = 0.395 | Accuracy = 87.5%
2023-01-04 19:55:57,642 - INFO - Epoch 12 - VAL - Batch 200 - Loss = 0.295 | Accuracy = 90.625%
2023-01-04 19:56:02,237 - INFO - Epoch 12 - VAL - Batch 300 - Loss = 0.491 | Accuracy = 90.625%
2023-01-04 19:56:05,952 - INFO - TRAIN phase
2023-01-04 19:56:06,016 - INFO - Epoch 13 - TRAIN - Batch 0 - Loss = 0.49 | Accuracy = 78.125%
2023-01-04 19:56:11,270 - INFO - Epoch 13 - TRAIN - Batch 100 - Loss = 0.672 | Accuracy = 71.875%
2023-01-04 19:56:16,891 - INFO - Epoch 13 - TRAIN - Batch 200 - Loss = 0.256 | Accuracy = 93.75%
2023-01-04 19:56:21,887 - INFO - Epoch 13 - TRAIN - Batch 300 - Loss = 0.272 | Accuracy = 93.75%
2023-01-04 19:56:26,991 - INFO - Epoch 13 - TRAIN - Batch 400 - Loss = 0.565 | Accuracy = 81.25%
2023-01-04 19:56:32,309 - INFO - Epoch 13 - TRAIN - Batch 500 - Loss = 0.173 | Accuracy = 93.75%
2023-01-04 19:56:37,470 - INFO - Epoch 13 - TRAIN - Batch 600 - Loss = 0.472 | Accuracy = 84.375%
2023-01-04 19:56:42,590 - INFO - Epoch 13 - TRAIN - Batch 700 - Loss = 0.457 | Accuracy = 87.5%
2023-01-04 19:56:47,774 - INFO - Epoch 13 - TRAIN - Batch 800 - Loss = 0.417 | Accuracy = 87.5%
2023-01-04 19:56:52,944 - INFO - Epoch 13 - TRAIN - Batch 900 - Loss = 0.412 | Accuracy = 90.625%
2023-01-04 19:56:58,158 - INFO - Epoch 13 - TRAIN - Batch 1000 - Loss = 0.541 | Accuracy = 81.25%
2023-01-04 19:57:03,609 - INFO - Epoch 13 - TRAIN - Batch 1100 - Loss = 0.242 | Accuracy = 87.5%
2023-01-04 19:57:08,614 - INFO - Epoch 13 - TRAIN - Batch 1200 - Loss = 0.198 | Accuracy = 93.75%
2023-01-04 19:57:13,357 - INFO - Epoch 13 - TRAIN - Batch 1300 - Loss = 0.642 | Accuracy = 78.125%
2023-01-04 19:57:18,186 - INFO - Epoch 13 - TRAIN - Batch 1400 - Loss = 0.274 | Accuracy = 90.625%
2023-01-04 19:57:22,956 - INFO - Epoch 13 - TRAIN - Batch 1500 - Loss = 0.242 | Accuracy = 90.625%
2023-01-04 19:57:24,375 - INFO - VAL phase
2023-01-04 19:57:24,426 - INFO - Epoch 13 - VAL - Batch 0 - Loss = 0.626 | Accuracy = 87.5%
2023-01-04 19:57:28,979 - INFO - Epoch 13 - VAL - Batch 100 - Loss = 0.299 | Accuracy = 84.375%
2023-01-04 19:57:33,440 - INFO - Epoch 13 - VAL - Batch 200 - Loss = 0.342 | Accuracy = 90.625%
2023-01-04 19:57:37,897 - INFO - Epoch 13 - VAL - Batch 300 - Loss = 0.63 | Accuracy = 87.5%
2023-01-04 19:57:41,507 - INFO - TRAIN phase
2023-01-04 19:57:41,572 - INFO - Epoch 14 - TRAIN - Batch 0 - Loss = 0.276 | Accuracy = 87.5%
2023-01-04 19:57:46,452 - INFO - Epoch 14 - TRAIN - Batch 100 - Loss = 0.595 | Accuracy = 81.25%
2023-01-04 19:57:51,467 - INFO - Epoch 14 - TRAIN - Batch 200 - Loss = 0.266 | Accuracy = 93.75%
2023-01-04 19:57:57,008 - INFO - Epoch 14 - TRAIN - Batch 300 - Loss = 0.537 | Accuracy = 84.375%
2023-01-04 19:58:02,216 - INFO - Epoch 14 - TRAIN - Batch 400 - Loss = 0.243 | Accuracy = 93.75%
2023-01-04 19:58:07,375 - INFO - Epoch 14 - TRAIN - Batch 500 - Loss = 0.216 | Accuracy = 93.75%
2023-01-04 19:58:12,696 - INFO - Epoch 14 - TRAIN - Batch 600 - Loss = 0.485 | Accuracy = 81.25%
2023-01-04 19:58:17,917 - INFO - Epoch 14 - TRAIN - Batch 700 - Loss = 0.46 | Accuracy = 90.625%
2023-01-04 19:58:23,156 - INFO - Epoch 14 - TRAIN - Batch 800 - Loss = 1.091 | Accuracy = 81.25%
2023-01-04 19:58:28,368 - INFO - Epoch 14 - TRAIN - Batch 900 - Loss = 0.414 | Accuracy = 90.625%
2023-01-04 19:58:33,620 - INFO - Epoch 14 - TRAIN - Batch 1000 - Loss = 0.866 | Accuracy = 81.25%
2023-01-04 19:58:38,748 - INFO - Epoch 14 - TRAIN - Batch 1100 - Loss = 0.555 | Accuracy = 81.25%
2023-01-04 19:58:44,170 - INFO - Epoch 14 - TRAIN - Batch 1200 - Loss = 0.877 | Accuracy = 78.125%
2023-01-04 19:58:50,045 - INFO - Epoch 14 - TRAIN - Batch 1300 - Loss = 0.565 | Accuracy = 81.25%
2023-01-04 19:58:55,828 - INFO - Epoch 14 - TRAIN - Batch 1400 - Loss = 0.7 | Accuracy = 81.25%
2023-01-04 19:59:01,728 - INFO - Epoch 14 - TRAIN - Batch 1500 - Loss = 0.096 | Accuracy = 100.0%
2023-01-04 19:59:03,419 - INFO - VAL phase
2023-01-04 19:59:03,468 - INFO - Epoch 14 - VAL - Batch 0 - Loss = 0.115 | Accuracy = 96.875%
2023-01-04 19:59:08,228 - INFO - Epoch 14 - VAL - Batch 100 - Loss = 0.456 | Accuracy = 90.625%
2023-01-04 19:59:13,053 - INFO - Epoch 14 - VAL - Batch 200 - Loss = 0.346 | Accuracy = 90.625%
2023-01-04 19:59:17,885 - INFO - Epoch 14 - VAL - Batch 300 - Loss = 0.38 | Accuracy = 90.625%
2023-01-04 19:59:21,782 - INFO - TRAIN phase
2023-01-04 19:59:21,855 - INFO - Epoch 15 - TRAIN - Batch 0 - Loss = 0.481 | Accuracy = 75.0%
2023-01-04 19:59:27,637 - INFO - Epoch 15 - TRAIN - Batch 100 - Loss = 0.514 | Accuracy = 84.375%
2023-01-04 19:59:33,492 - INFO - Epoch 15 - TRAIN - Batch 200 - Loss = 0.676 | Accuracy = 87.5%
2023-01-04 19:59:39,256 - INFO - Epoch 15 - TRAIN - Batch 300 - Loss = 0.43 | Accuracy = 87.5%
2023-01-04 19:59:45,100 - INFO - Epoch 15 - TRAIN - Batch 400 - Loss = 0.594 | Accuracy = 81.25%
2023-01-04 19:59:50,930 - INFO - Epoch 15 - TRAIN - Batch 500 - Loss = 0.444 | Accuracy = 84.375%
2023-01-04 19:59:56,714 - INFO - Epoch 15 - TRAIN - Batch 600 - Loss = 0.325 | Accuracy = 93.75%
2023-01-04 20:00:02,733 - INFO - Epoch 15 - TRAIN - Batch 700 - Loss = 0.675 | Accuracy = 78.125%
2023-01-04 20:00:08,566 - INFO - Epoch 15 - TRAIN - Batch 800 - Loss = 0.363 | Accuracy = 81.25%
2023-01-04 20:00:14,271 - INFO - Epoch 15 - TRAIN - Batch 900 - Loss = 0.609 | Accuracy = 81.25%
2023-01-04 20:00:20,193 - INFO - Epoch 15 - TRAIN - Batch 1000 - Loss = 0.162 | Accuracy = 96.875%
2023-01-04 20:00:26,034 - INFO - Epoch 15 - TRAIN - Batch 1100 - Loss = 0.391 | Accuracy = 81.25%
2023-01-04 20:00:31,731 - INFO - Epoch 15 - TRAIN - Batch 1200 - Loss = 0.504 | Accuracy = 81.25%
2023-01-04 20:00:37,557 - INFO - Epoch 15 - TRAIN - Batch 1300 - Loss = 0.559 | Accuracy = 84.375%
2023-01-04 20:00:43,383 - INFO - Epoch 15 - TRAIN - Batch 1400 - Loss = 0.271 | Accuracy = 93.75%
2023-01-04 20:00:49,144 - INFO - Epoch 15 - TRAIN - Batch 1500 - Loss = 0.445 | Accuracy = 87.5%
2023-01-04 20:00:50,829 - INFO - VAL phase
2023-01-04 20:00:50,888 - INFO - Epoch 15 - VAL - Batch 0 - Loss = 0.524 | Accuracy = 87.5%
2023-01-04 20:00:55,715 - INFO - Epoch 15 - VAL - Batch 100 - Loss = 0.257 | Accuracy = 93.75%
2023-01-04 20:01:00,439 - INFO - Epoch 15 - VAL - Batch 200 - Loss = 0.468 | Accuracy = 84.375%
2023-01-04 20:01:05,236 - INFO - Epoch 15 - VAL - Batch 300 - Loss = 0.453 | Accuracy = 87.5%
2023-01-04 20:01:09,713 - INFO - TRAIN phase
2023-01-04 20:01:09,843 - INFO - Epoch 16 - TRAIN - Batch 0 - Loss = 0.647 | Accuracy = 81.25%
2023-01-04 20:01:14,705 - INFO - Epoch 16 - TRAIN - Batch 100 - Loss = 0.27 | Accuracy = 90.625%
2023-01-04 20:01:19,542 - INFO - Epoch 16 - TRAIN - Batch 200 - Loss = 0.284 | Accuracy = 93.75%
2023-01-04 20:01:24,304 - INFO - Epoch 16 - TRAIN - Batch 300 - Loss = 0.559 | Accuracy = 81.25%
2023-01-04 20:01:29,088 - INFO - Epoch 16 - TRAIN - Batch 400 - Loss = 0.272 | Accuracy = 90.625%
2023-01-04 20:01:33,888 - INFO - Epoch 16 - TRAIN - Batch 500 - Loss = 0.523 | Accuracy = 81.25%
2023-01-04 20:01:38,654 - INFO - Epoch 16 - TRAIN - Batch 600 - Loss = 0.257 | Accuracy = 87.5%
2023-01-04 20:01:43,412 - INFO - Epoch 16 - TRAIN - Batch 700 - Loss = 0.48 | Accuracy = 90.625%
2023-01-04 20:01:48,229 - INFO - Epoch 16 - TRAIN - Batch 800 - Loss = 0.781 | Accuracy = 81.25%
2023-01-04 20:01:53,042 - INFO - Epoch 16 - TRAIN - Batch 900 - Loss = 0.477 | Accuracy = 90.625%
2023-01-04 20:01:58,611 - INFO - Epoch 16 - TRAIN - Batch 1000 - Loss = 0.226 | Accuracy = 93.75%
2023-01-04 20:02:03,991 - INFO - Epoch 16 - TRAIN - Batch 1100 - Loss = 0.552 | Accuracy = 87.5%
2023-01-04 20:02:09,276 - INFO - Epoch 16 - TRAIN - Batch 1200 - Loss = 0.396 | Accuracy = 84.375%
2023-01-04 20:02:14,465 - INFO - Epoch 16 - TRAIN - Batch 1300 - Loss = 0.468 | Accuracy = 90.625%
2023-01-04 20:02:19,582 - INFO - Epoch 16 - TRAIN - Batch 1400 - Loss = 0.228 | Accuracy = 93.75%
2023-01-04 20:02:24,726 - INFO - Epoch 16 - TRAIN - Batch 1500 - Loss = 0.603 | Accuracy = 78.125%
2023-01-04 20:02:26,288 - INFO - VAL phase
2023-01-04 20:02:26,347 - INFO - Epoch 16 - VAL - Batch 0 - Loss = 0.319 | Accuracy = 90.625%
2023-01-04 20:02:30,890 - INFO - Epoch 16 - VAL - Batch 100 - Loss = 0.38 | Accuracy = 90.625%
2023-01-04 20:02:35,404 - INFO - Epoch 16 - VAL - Batch 200 - Loss = 0.56 | Accuracy = 81.25%
2023-01-04 20:02:39,993 - INFO - Epoch 16 - VAL - Batch 300 - Loss = 0.331 | Accuracy = 93.75%
2023-01-04 20:02:43,790 - INFO - TRAIN phase
2023-01-04 20:02:43,868 - INFO - Epoch 17 - TRAIN - Batch 0 - Loss = 0.469 | Accuracy = 81.25%
2023-01-04 20:02:52,791 - INFO - Epoch 17 - TRAIN - Batch 100 - Loss = 0.43 | Accuracy = 84.375%
2023-01-04 20:02:57,938 - INFO - Epoch 17 - TRAIN - Batch 200 - Loss = 0.209 | Accuracy = 93.75%
2023-01-04 20:03:03,214 - INFO - Epoch 17 - TRAIN - Batch 300 - Loss = 0.164 | Accuracy = 90.625%
2023-01-04 20:03:08,500 - INFO - Epoch 17 - TRAIN - Batch 400 - Loss = 0.548 | Accuracy = 81.25%
2023-01-04 20:03:13,742 - INFO - Epoch 17 - TRAIN - Batch 500 - Loss = 0.379 | Accuracy = 87.5%
2023-01-04 20:03:19,061 - INFO - Epoch 17 - TRAIN - Batch 600 - Loss = 0.162 | Accuracy = 96.875%
2023-01-04 20:03:24,411 - INFO - Epoch 17 - TRAIN - Batch 700 - Loss = 0.497 | Accuracy = 81.25%
2023-01-04 20:03:29,690 - INFO - Epoch 17 - TRAIN - Batch 800 - Loss = 0.422 | Accuracy = 90.625%
2023-01-04 20:03:35,502 - INFO - Epoch 17 - TRAIN - Batch 900 - Loss = 0.401 | Accuracy = 93.75%
2023-01-04 20:03:41,311 - INFO - Epoch 17 - TRAIN - Batch 1000 - Loss = 0.458 | Accuracy = 81.25%
2023-01-04 20:03:47,166 - INFO - Epoch 17 - TRAIN - Batch 1100 - Loss = 0.398 | Accuracy = 87.5%
2023-01-04 20:03:53,134 - INFO - Epoch 17 - TRAIN - Batch 1200 - Loss = 0.709 | Accuracy = 81.25%
2023-01-04 20:03:59,007 - INFO - Epoch 17 - TRAIN - Batch 1300 - Loss = 0.39 | Accuracy = 81.25%
2023-01-04 20:04:05,006 - INFO - Epoch 17 - TRAIN - Batch 1400 - Loss = 0.469 | Accuracy = 81.25%
2023-01-04 20:04:10,887 - INFO - Epoch 17 - TRAIN - Batch 1500 - Loss = 0.384 | Accuracy = 90.625%
2023-01-04 20:04:12,539 - INFO - VAL phase
2023-01-04 20:04:12,587 - INFO - Epoch 17 - VAL - Batch 0 - Loss = 0.24 | Accuracy = 90.625%
2023-01-04 20:04:17,400 - INFO - Epoch 17 - VAL - Batch 100 - Loss = 0.52 | Accuracy = 87.5%
2023-01-04 20:04:22,539 - INFO - Epoch 17 - VAL - Batch 200 - Loss = 0.394 | Accuracy = 87.5%
2023-01-04 20:04:28,169 - INFO - Epoch 17 - VAL - Batch 300 - Loss = 0.485 | Accuracy = 84.375%
2023-01-04 20:04:32,847 - INFO - TRAIN phase
2023-01-04 20:04:32,954 - INFO - Epoch 18 - TRAIN - Batch 0 - Loss = 0.401 | Accuracy = 84.375%
2023-01-04 20:04:37,943 - INFO - Epoch 18 - TRAIN - Batch 100 - Loss = 0.635 | Accuracy = 81.25%
2023-01-04 20:04:42,886 - INFO - Epoch 18 - TRAIN - Batch 200 - Loss = 0.365 | Accuracy = 87.5%
2023-01-04 20:04:47,852 - INFO - Epoch 18 - TRAIN - Batch 300 - Loss = 0.74 | Accuracy = 87.5%
2023-01-04 20:04:52,723 - INFO - Epoch 18 - TRAIN - Batch 400 - Loss = 0.401 | Accuracy = 87.5%
2023-01-04 20:04:57,611 - INFO - Epoch 18 - TRAIN - Batch 500 - Loss = 0.603 | Accuracy = 84.375%
2023-01-04 20:05:02,429 - INFO - Epoch 18 - TRAIN - Batch 600 - Loss = 0.553 | Accuracy = 81.25%
2023-01-04 20:05:07,199 - INFO - Epoch 18 - TRAIN - Batch 700 - Loss = 1.159 | Accuracy = 71.875%
2023-01-04 20:05:12,122 - INFO - Epoch 18 - TRAIN - Batch 800 - Loss = 0.466 | Accuracy = 90.625%
2023-01-04 20:05:17,084 - INFO - Epoch 18 - TRAIN - Batch 900 - Loss = 0.466 | Accuracy = 81.25%
2023-01-04 20:05:22,939 - INFO - Epoch 18 - TRAIN - Batch 1000 - Loss = 0.446 | Accuracy = 84.375%
2023-01-04 20:05:28,820 - INFO - Epoch 18 - TRAIN - Batch 1100 - Loss = 0.378 | Accuracy = 84.375%
2023-01-04 20:05:34,715 - INFO - Epoch 18 - TRAIN - Batch 1200 - Loss = 0.302 | Accuracy = 90.625%
2023-01-04 20:05:40,577 - INFO - Epoch 18 - TRAIN - Batch 1300 - Loss = 0.678 | Accuracy = 84.375%
2023-01-04 20:05:46,433 - INFO - Epoch 18 - TRAIN - Batch 1400 - Loss = 0.358 | Accuracy = 90.625%
2023-01-04 20:05:52,222 - INFO - Epoch 18 - TRAIN - Batch 1500 - Loss = 0.451 | Accuracy = 87.5%
2023-01-04 20:05:53,916 - INFO - VAL phase
2023-01-04 20:05:53,972 - INFO - Epoch 18 - VAL - Batch 0 - Loss = 0.27 | Accuracy = 93.75%
2023-01-04 20:05:58,827 - INFO - Epoch 18 - VAL - Batch 100 - Loss = 0.321 | Accuracy = 87.5%
2023-01-04 20:06:03,684 - INFO - Epoch 18 - VAL - Batch 200 - Loss = 0.253 | Accuracy = 93.75%
2023-01-04 20:06:08,523 - INFO - Epoch 18 - VAL - Batch 300 - Loss = 0.248 | Accuracy = 90.625%
2023-01-04 20:06:13,130 - INFO - TRAIN phase
2023-01-04 20:06:13,263 - INFO - Epoch 19 - TRAIN - Batch 0 - Loss = 0.452 | Accuracy = 87.5%
2023-01-04 20:06:18,154 - INFO - Epoch 19 - TRAIN - Batch 100 - Loss = 0.25 | Accuracy = 93.75%
2023-01-04 20:06:23,011 - INFO - Epoch 19 - TRAIN - Batch 200 - Loss = 0.815 | Accuracy = 78.125%
2023-01-04 20:06:27,839 - INFO - Epoch 19 - TRAIN - Batch 300 - Loss = 0.184 | Accuracy = 93.75%
2023-01-04 20:06:32,665 - INFO - Epoch 19 - TRAIN - Batch 400 - Loss = 0.385 | Accuracy = 87.5%
2023-01-04 20:06:37,446 - INFO - Epoch 19 - TRAIN - Batch 500 - Loss = 0.373 | Accuracy = 81.25%
2023-01-04 20:06:42,272 - INFO - Epoch 19 - TRAIN - Batch 600 - Loss = 0.558 | Accuracy = 81.25%
2023-01-04 20:06:47,130 - INFO - Epoch 19 - TRAIN - Batch 700 - Loss = 0.497 | Accuracy = 81.25%
2023-01-04 20:06:51,881 - INFO - Epoch 19 - TRAIN - Batch 800 - Loss = 0.325 | Accuracy = 90.625%
2023-01-04 20:06:56,668 - INFO - Epoch 19 - TRAIN - Batch 900 - Loss = 0.323 | Accuracy = 81.25%
2023-01-04 20:07:02,369 - INFO - Epoch 19 - TRAIN - Batch 1000 - Loss = 0.54 | Accuracy = 84.375%
2023-01-04 20:07:07,608 - INFO - Epoch 19 - TRAIN - Batch 1100 - Loss = 0.697 | Accuracy = 78.125%
2023-01-04 20:07:12,749 - INFO - Epoch 19 - TRAIN - Batch 1200 - Loss = 0.474 | Accuracy = 84.375%
2023-01-04 20:07:17,961 - INFO - Epoch 19 - TRAIN - Batch 1300 - Loss = 0.292 | Accuracy = 93.75%
2023-01-04 20:07:23,233 - INFO - Epoch 19 - TRAIN - Batch 1400 - Loss = 0.365 | Accuracy = 87.5%
2023-01-04 20:07:28,526 - INFO - Epoch 19 - TRAIN - Batch 1500 - Loss = 0.366 | Accuracy = 90.625%
2023-01-04 20:07:30,055 - INFO - VAL phase
2023-01-04 20:07:30,109 - INFO - Epoch 19 - VAL - Batch 0 - Loss = 0.706 | Accuracy = 84.375%
2023-01-04 20:07:34,576 - INFO - Epoch 19 - VAL - Batch 100 - Loss = 0.703 | Accuracy = 78.125%
2023-01-04 20:07:39,249 - INFO - Epoch 19 - VAL - Batch 200 - Loss = 0.313 | Accuracy = 87.5%
2023-01-04 20:07:43,725 - INFO - Epoch 19 - VAL - Batch 300 - Loss = 0.234 | Accuracy = 90.625%
2023-01-04 20:07:47,547 - INFO - TRAIN phase
2023-01-04 20:07:47,620 - INFO - Epoch 20 - TRAIN - Batch 0 - Loss = 0.203 | Accuracy = 93.75%
2023-01-04 20:07:53,698 - INFO - Epoch 20 - TRAIN - Batch 100 - Loss = 0.639 | Accuracy = 90.625%
2023-01-04 20:07:59,712 - INFO - Epoch 20 - TRAIN - Batch 200 - Loss = 0.456 | Accuracy = 84.375%
2023-01-04 20:08:05,597 - INFO - Epoch 20 - TRAIN - Batch 300 - Loss = 0.464 | Accuracy = 87.5%
2023-01-04 20:08:11,332 - INFO - Epoch 20 - TRAIN - Batch 400 - Loss = 0.544 | Accuracy = 90.625%
2023-01-04 20:08:17,232 - INFO - Epoch 20 - TRAIN - Batch 500 - Loss = 0.369 | Accuracy = 90.625%
2023-01-04 20:08:23,051 - INFO - Epoch 20 - TRAIN - Batch 600 - Loss = 0.342 | Accuracy = 93.75%
2023-01-04 20:08:28,840 - INFO - Epoch 20 - TRAIN - Batch 700 - Loss = 0.406 | Accuracy = 90.625%
2023-01-04 20:08:34,646 - INFO - Epoch 20 - TRAIN - Batch 800 - Loss = 0.668 | Accuracy = 75.0%
2023-01-04 20:08:40,287 - INFO - Epoch 20 - TRAIN - Batch 900 - Loss = 0.197 | Accuracy = 93.75%
2023-01-04 20:08:45,511 - INFO - Epoch 20 - TRAIN - Batch 1000 - Loss = 0.743 | Accuracy = 90.625%
2023-01-04 20:08:50,809 - INFO - Epoch 20 - TRAIN - Batch 1100 - Loss = 0.584 | Accuracy = 84.375%
2023-01-04 20:08:56,061 - INFO - Epoch 20 - TRAIN - Batch 1200 - Loss = 0.377 | Accuracy = 90.625%
2023-01-04 20:09:01,321 - INFO - Epoch 20 - TRAIN - Batch 1300 - Loss = 0.806 | Accuracy = 81.25%
2023-01-04 20:09:06,468 - INFO - Epoch 20 - TRAIN - Batch 1400 - Loss = 0.4 | Accuracy = 90.625%
2023-01-04 20:09:11,688 - INFO - Epoch 20 - TRAIN - Batch 1500 - Loss = 0.595 | Accuracy = 90.625%
2023-01-04 20:09:13,206 - INFO - VAL phase
2023-01-04 20:09:13,264 - INFO - Epoch 20 - VAL - Batch 0 - Loss = 0.178 | Accuracy = 93.75%
2023-01-04 20:09:17,940 - INFO - Epoch 20 - VAL - Batch 100 - Loss = 0.367 | Accuracy = 84.375%
2023-01-04 20:09:22,552 - INFO - Epoch 20 - VAL - Batch 200 - Loss = 0.381 | Accuracy = 93.75%
2023-01-04 20:09:27,541 - INFO - Epoch 20 - VAL - Batch 300 - Loss = 0.161 | Accuracy = 93.75%
2023-01-04 20:09:32,136 - INFO - TRAIN phase
2023-01-04 20:09:32,239 - INFO - Epoch 21 - TRAIN - Batch 0 - Loss = 0.355 | Accuracy = 87.5%
2023-01-04 20:09:37,698 - INFO - Epoch 21 - TRAIN - Batch 100 - Loss = 0.213 | Accuracy = 96.875%
2023-01-04 20:09:42,884 - INFO - Epoch 21 - TRAIN - Batch 200 - Loss = 0.296 | Accuracy = 90.625%
2023-01-04 20:09:47,974 - INFO - Epoch 21 - TRAIN - Batch 300 - Loss = 0.928 | Accuracy = 81.25%
2023-01-04 20:09:53,131 - INFO - Epoch 21 - TRAIN - Batch 400 - Loss = 0.189 | Accuracy = 96.875%
2023-01-04 20:09:58,299 - INFO - Epoch 21 - TRAIN - Batch 500 - Loss = 0.101 | Accuracy = 96.875%
2023-01-04 20:10:03,571 - INFO - Epoch 21 - TRAIN - Batch 600 - Loss = 0.177 | Accuracy = 93.75%
2023-01-04 20:10:08,761 - INFO - Epoch 21 - TRAIN - Batch 700 - Loss = 0.406 | Accuracy = 84.375%
2023-01-04 20:10:13,980 - INFO - Epoch 21 - TRAIN - Batch 800 - Loss = 0.894 | Accuracy = 71.875%
2023-01-04 20:10:19,843 - INFO - Epoch 21 - TRAIN - Batch 900 - Loss = 0.558 | Accuracy = 84.375%
2023-01-04 20:10:25,131 - INFO - Epoch 21 - TRAIN - Batch 1000 - Loss = 0.436 | Accuracy = 90.625%
2023-01-04 20:10:30,165 - INFO - Epoch 21 - TRAIN - Batch 1100 - Loss = 0.422 | Accuracy = 87.5%
2023-01-04 20:10:35,343 - INFO - Epoch 21 - TRAIN - Batch 1200 - Loss = 0.347 | Accuracy = 84.375%
2023-01-04 20:10:40,578 - INFO - Epoch 21 - TRAIN - Batch 1300 - Loss = 0.209 | Accuracy = 96.875%
2023-01-04 20:10:45,788 - INFO - Epoch 21 - TRAIN - Batch 1400 - Loss = 0.527 | Accuracy = 81.25%
2023-01-04 20:10:51,011 - INFO - Epoch 21 - TRAIN - Batch 1500 - Loss = 0.756 | Accuracy = 75.0%
2023-01-04 20:10:52,545 - INFO - VAL phase
2023-01-04 20:10:52,599 - INFO - Epoch 21 - VAL - Batch 0 - Loss = 0.293 | Accuracy = 93.75%
2023-01-04 20:10:57,244 - INFO - Epoch 21 - VAL - Batch 100 - Loss = 0.513 | Accuracy = 87.5%
2023-01-04 20:11:01,877 - INFO - Epoch 21 - VAL - Batch 200 - Loss = 0.261 | Accuracy = 87.5%
2023-01-04 20:11:06,531 - INFO - Epoch 21 - VAL - Batch 300 - Loss = 0.153 | Accuracy = 93.75%
2023-01-04 20:11:10,844 - INFO - TRAIN phase
2023-01-04 20:11:10,926 - INFO - Epoch 22 - TRAIN - Batch 0 - Loss = 0.218 | Accuracy = 93.75%
2023-01-04 20:11:15,837 - INFO - Epoch 22 - TRAIN - Batch 100 - Loss = 0.336 | Accuracy = 90.625%
2023-01-04 20:11:20,704 - INFO - Epoch 22 - TRAIN - Batch 200 - Loss = 0.328 | Accuracy = 87.5%
2023-01-04 20:11:25,499 - INFO - Epoch 22 - TRAIN - Batch 300 - Loss = 0.706 | Accuracy = 84.375%
2023-01-04 20:11:30,244 - INFO - Epoch 22 - TRAIN - Batch 400 - Loss = 0.278 | Accuracy = 96.875%
2023-01-04 20:11:35,051 - INFO - Epoch 22 - TRAIN - Batch 500 - Loss = 1.133 | Accuracy = 81.25%
2023-01-04 20:11:39,757 - INFO - Epoch 22 - TRAIN - Batch 600 - Loss = 0.512 | Accuracy = 84.375%
2023-01-04 20:11:44,601 - INFO - Epoch 22 - TRAIN - Batch 700 - Loss = 0.163 | Accuracy = 93.75%
2023-01-04 20:11:49,467 - INFO - Epoch 22 - TRAIN - Batch 800 - Loss = 0.202 | Accuracy = 90.625%
2023-01-04 20:11:54,315 - INFO - Epoch 22 - TRAIN - Batch 900 - Loss = 0.144 | Accuracy = 96.875%
2023-01-04 20:11:59,395 - INFO - Epoch 22 - TRAIN - Batch 1000 - Loss = 0.139 | Accuracy = 96.875%
2023-01-04 20:12:05,371 - INFO - Epoch 22 - TRAIN - Batch 1100 - Loss = 0.327 | Accuracy = 90.625%
2023-01-04 20:12:11,206 - INFO - Epoch 22 - TRAIN - Batch 1200 - Loss = 0.458 | Accuracy = 84.375%
2023-01-04 20:12:16,985 - INFO - Epoch 22 - TRAIN - Batch 1300 - Loss = 0.28 | Accuracy = 90.625%
2023-01-04 20:12:22,808 - INFO - Epoch 22 - TRAIN - Batch 1400 - Loss = 0.269 | Accuracy = 87.5%
2023-01-04 20:12:28,598 - INFO - Epoch 22 - TRAIN - Batch 1500 - Loss = 0.465 | Accuracy = 87.5%
2023-01-04 20:12:30,291 - INFO - VAL phase
2023-01-04 20:12:30,343 - INFO - Epoch 22 - VAL - Batch 0 - Loss = 0.333 | Accuracy = 90.625%
2023-01-04 20:12:35,113 - INFO - Epoch 22 - VAL - Batch 100 - Loss = 0.218 | Accuracy = 90.625%
2023-01-04 20:12:39,961 - INFO - Epoch 22 - VAL - Batch 200 - Loss = 0.375 | Accuracy = 90.625%
2023-01-04 20:12:44,757 - INFO - Epoch 22 - VAL - Batch 300 - Loss = 0.147 | Accuracy = 93.75%
2023-01-04 20:12:48,676 - INFO - TRAIN phase
2023-01-04 20:12:48,768 - INFO - Epoch 23 - TRAIN - Batch 0 - Loss = 0.451 | Accuracy = 84.375%
2023-01-04 20:12:53,830 - INFO - Epoch 23 - TRAIN - Batch 100 - Loss = 0.586 | Accuracy = 84.375%
2023-01-04 20:12:58,637 - INFO - Epoch 23 - TRAIN - Batch 200 - Loss = 0.448 | Accuracy = 87.5%
2023-01-04 20:13:03,474 - INFO - Epoch 23 - TRAIN - Batch 300 - Loss = 0.569 | Accuracy = 78.125%
2023-01-04 20:13:08,336 - INFO - Epoch 23 - TRAIN - Batch 400 - Loss = 1.027 | Accuracy = 81.25%
2023-01-04 20:13:13,149 - INFO - Epoch 23 - TRAIN - Batch 500 - Loss = 0.358 | Accuracy = 90.625%
2023-01-04 20:13:17,981 - INFO - Epoch 23 - TRAIN - Batch 600 - Loss = 0.311 | Accuracy = 90.625%
2023-01-04 20:13:22,826 - INFO - Epoch 23 - TRAIN - Batch 700 - Loss = 0.465 | Accuracy = 87.5%
2023-01-04 20:13:27,643 - INFO - Epoch 23 - TRAIN - Batch 800 - Loss = 0.548 | Accuracy = 81.25%
2023-01-04 20:13:32,448 - INFO - Epoch 23 - TRAIN - Batch 900 - Loss = 0.29 | Accuracy = 90.625%
2023-01-04 20:13:37,354 - INFO - Epoch 23 - TRAIN - Batch 1000 - Loss = 0.373 | Accuracy = 81.25%
2023-01-04 20:13:43,251 - INFO - Epoch 23 - TRAIN - Batch 1100 - Loss = 0.712 | Accuracy = 81.25%
2023-01-04 20:13:49,094 - INFO - Epoch 23 - TRAIN - Batch 1200 - Loss = 0.178 | Accuracy = 96.875%
2023-01-04 20:13:54,883 - INFO - Epoch 23 - TRAIN - Batch 1300 - Loss = 0.286 | Accuracy = 90.625%
2023-01-04 20:14:00,737 - INFO - Epoch 23 - TRAIN - Batch 1400 - Loss = 0.395 | Accuracy = 87.5%
2023-01-04 20:14:06,571 - INFO - Epoch 23 - TRAIN - Batch 1500 - Loss = 0.139 | Accuracy = 96.875%
2023-01-04 20:14:08,272 - INFO - VAL phase
2023-01-04 20:14:08,326 - INFO - Epoch 23 - VAL - Batch 0 - Loss = 0.755 | Accuracy = 81.25%
2023-01-04 20:14:12,987 - INFO - Epoch 23 - VAL - Batch 100 - Loss = 0.581 | Accuracy = 87.5%
2023-01-04 20:14:17,714 - INFO - Epoch 23 - VAL - Batch 200 - Loss = 0.282 | Accuracy = 90.625%
2023-01-04 20:14:22,450 - INFO - Epoch 23 - VAL - Batch 300 - Loss = 0.155 | Accuracy = 96.875%
2023-01-04 20:14:26,383 - INFO - TRAIN phase
2023-01-04 20:14:26,450 - INFO - Epoch 24 - TRAIN - Batch 0 - Loss = 0.338 | Accuracy = 90.625%
2023-01-04 20:14:31,971 - INFO - Epoch 24 - TRAIN - Batch 100 - Loss = 0.622 | Accuracy = 84.375%
2023-01-04 20:14:37,190 - INFO - Epoch 24 - TRAIN - Batch 200 - Loss = 0.82 | Accuracy = 81.25%
2023-01-04 20:14:42,348 - INFO - Epoch 24 - TRAIN - Batch 300 - Loss = 0.094 | Accuracy = 96.875%
2023-01-04 20:14:47,604 - INFO - Epoch 24 - TRAIN - Batch 400 - Loss = 0.371 | Accuracy = 87.5%
2023-01-04 20:14:52,865 - INFO - Epoch 24 - TRAIN - Batch 500 - Loss = 0.284 | Accuracy = 87.5%
2023-01-04 20:14:58,061 - INFO - Epoch 24 - TRAIN - Batch 600 - Loss = 0.276 | Accuracy = 84.375%
2023-01-04 20:15:03,302 - INFO - Epoch 24 - TRAIN - Batch 700 - Loss = 0.51 | Accuracy = 81.25%
2023-01-04 20:15:08,469 - INFO - Epoch 24 - TRAIN - Batch 800 - Loss = 0.226 | Accuracy = 87.5%
2023-01-04 20:15:13,706 - INFO - Epoch 24 - TRAIN - Batch 900 - Loss = 0.351 | Accuracy = 87.5%
2023-01-04 20:15:19,655 - INFO - Epoch 24 - TRAIN - Batch 1000 - Loss = 0.424 | Accuracy = 90.625%
2023-01-04 20:15:25,450 - INFO - Epoch 24 - TRAIN - Batch 1100 - Loss = 0.178 | Accuracy = 93.75%
2023-01-04 20:15:31,278 - INFO - Epoch 24 - TRAIN - Batch 1200 - Loss = 0.403 | Accuracy = 84.375%
2023-01-04 20:15:37,135 - INFO - Epoch 24 - TRAIN - Batch 1300 - Loss = 0.347 | Accuracy = 87.5%
2023-01-04 20:15:42,843 - INFO - Epoch 24 - TRAIN - Batch 1400 - Loss = 0.616 | Accuracy = 84.375%
2023-01-04 20:15:48,689 - INFO - Epoch 24 - TRAIN - Batch 1500 - Loss = 0.474 | Accuracy = 81.25%
2023-01-04 20:15:50,392 - INFO - VAL phase
2023-01-04 20:15:50,454 - INFO - Epoch 24 - VAL - Batch 0 - Loss = 0.353 | Accuracy = 93.75%
2023-01-04 20:15:55,259 - INFO - Epoch 24 - VAL - Batch 100 - Loss = 0.156 | Accuracy = 96.875%
2023-01-04 20:16:00,121 - INFO - Epoch 24 - VAL - Batch 200 - Loss = 0.214 | Accuracy = 93.75%
2023-01-04 20:16:05,278 - INFO - Epoch 24 - VAL - Batch 300 - Loss = 0.521 | Accuracy = 90.625%
2023-01-05 02:12:51,799 - INFO - Initialized Digit model
2023-01-05 02:12:51,987 - INFO - 
    Training details: 
    ------------------------    
    Model: HNet
    Model Type: digit
    Epochs: 25
    Optimizer: SGD
    Loss: CrossEntropyLoss
    Learning Rate: 1e-05
    Learning Rate Scheduler: <torch.optim.lr_scheduler.CyclicLR object at 0x000002412DDBFB20>
    Batch Size: 32
    Logging Interval: 100 batches
    Train-dataset samples: 13600
    Validation-dataset samples: 3400 
    -------------------------
    
2023-01-05 02:12:51,987 - INFO - TRAIN phase
2023-01-05 02:12:57,236 - INFO - Epoch 0 - TRAIN - Batch 0 - Loss = 2.263 | Accuracy = 6.25%
2023-01-05 02:13:02,603 - INFO - Epoch 0 - TRAIN - Batch 100 - Loss = 2.242 | Accuracy = 18.75%
2023-01-05 02:13:09,056 - INFO - Epoch 0 - TRAIN - Batch 200 - Loss = 2.28 | Accuracy = 9.375%
2023-01-05 02:13:14,639 - INFO - Epoch 0 - TRAIN - Batch 300 - Loss = 2.155 | Accuracy = 31.25%
2023-01-05 02:13:22,413 - INFO - Epoch 0 - TRAIN - Batch 400 - Loss = 2.125 | Accuracy = 40.625%
2023-01-05 02:13:24,303 - INFO - VAL phase
2023-01-05 02:13:24,365 - INFO - Epoch 0 - VAL - Batch 0 - Loss = 2.088 | Accuracy = 59.375%
2023-01-05 02:13:30,288 - INFO - Epoch 0 - VAL - Batch 100 - Loss = 2.115 | Accuracy = 50.0%
2023-01-05 02:13:30,618 - INFO - TRAIN phase
2023-01-05 02:13:30,713 - INFO - Epoch 1 - TRAIN - Batch 0 - Loss = 2.139 | Accuracy = 31.25%
2023-01-05 02:13:36,240 - INFO - Epoch 1 - TRAIN - Batch 100 - Loss = 1.543 | Accuracy = 65.625%
2023-01-05 02:13:41,500 - INFO - Epoch 1 - TRAIN - Batch 200 - Loss = 1.224 | Accuracy = 65.625%
2023-01-05 02:13:46,586 - INFO - Epoch 1 - TRAIN - Batch 300 - Loss = 0.925 | Accuracy = 75.0%
2023-01-05 02:13:51,707 - INFO - Epoch 1 - TRAIN - Batch 400 - Loss = 0.788 | Accuracy = 75.0%
2023-01-05 02:13:52,955 - INFO - VAL phase
2023-01-05 02:13:53,017 - INFO - Epoch 1 - VAL - Batch 0 - Loss = 0.825 | Accuracy = 75.0%
2023-01-05 02:13:58,185 - INFO - Epoch 1 - VAL - Batch 100 - Loss = 0.734 | Accuracy = 75.0%
2023-01-05 02:13:58,491 - INFO - TRAIN phase
2023-01-05 02:13:58,554 - INFO - Epoch 2 - TRAIN - Batch 0 - Loss = 0.785 | Accuracy = 81.25%
2023-01-05 02:14:05,907 - INFO - Epoch 2 - TRAIN - Batch 100 - Loss = 0.795 | Accuracy = 71.875%
2023-01-05 02:14:12,827 - INFO - Epoch 2 - TRAIN - Batch 200 - Loss = 1.233 | Accuracy = 62.5%
2023-01-05 02:14:19,376 - INFO - Epoch 2 - TRAIN - Batch 300 - Loss = 0.467 | Accuracy = 87.5%
2023-01-05 02:14:26,750 - INFO - Epoch 2 - TRAIN - Batch 400 - Loss = 0.497 | Accuracy = 90.625%
2023-01-05 02:14:28,625 - INFO - VAL phase
2023-01-05 02:14:28,683 - INFO - Epoch 2 - VAL - Batch 0 - Loss = 0.697 | Accuracy = 78.125%
2023-01-05 02:14:34,362 - INFO - Epoch 2 - VAL - Batch 100 - Loss = 0.534 | Accuracy = 81.25%
2023-01-05 02:14:34,648 - INFO - TRAIN phase
2023-01-05 02:14:34,725 - INFO - Epoch 3 - TRAIN - Batch 0 - Loss = 0.621 | Accuracy = 81.25%
2023-01-05 02:14:41,529 - INFO - Epoch 3 - TRAIN - Batch 100 - Loss = 0.864 | Accuracy = 71.875%
2023-01-05 02:14:48,495 - INFO - Epoch 3 - TRAIN - Batch 200 - Loss = 0.587 | Accuracy = 81.25%
2023-01-05 02:14:55,423 - INFO - Epoch 3 - TRAIN - Batch 300 - Loss = 0.789 | Accuracy = 68.75%
2023-01-05 02:15:02,659 - INFO - Epoch 3 - TRAIN - Batch 400 - Loss = 0.347 | Accuracy = 90.625%
2023-01-05 02:15:05,005 - INFO - VAL phase
2023-01-05 02:15:05,066 - INFO - Epoch 3 - VAL - Batch 0 - Loss = 0.32 | Accuracy = 90.625%
2023-01-05 02:15:11,962 - INFO - Epoch 3 - VAL - Batch 100 - Loss = 0.568 | Accuracy = 78.125%
2023-01-05 02:15:12,287 - INFO - TRAIN phase
2023-01-05 02:15:12,387 - INFO - Epoch 4 - TRAIN - Batch 0 - Loss = 0.389 | Accuracy = 87.5%
2023-01-05 02:15:17,944 - INFO - Epoch 4 - TRAIN - Batch 100 - Loss = 0.737 | Accuracy = 75.0%
2023-01-05 02:15:24,595 - INFO - Epoch 4 - TRAIN - Batch 200 - Loss = 0.476 | Accuracy = 84.375%
2023-01-05 02:15:32,520 - INFO - Epoch 4 - TRAIN - Batch 300 - Loss = 0.597 | Accuracy = 78.125%
2023-01-05 02:15:38,461 - INFO - Epoch 4 - TRAIN - Batch 400 - Loss = 0.471 | Accuracy = 84.375%
2023-01-05 02:15:39,717 - INFO - VAL phase
2023-01-05 02:15:39,777 - INFO - Epoch 4 - VAL - Batch 0 - Loss = 0.269 | Accuracy = 93.75%
2023-01-05 02:15:44,843 - INFO - Epoch 4 - VAL - Batch 100 - Loss = 0.389 | Accuracy = 93.75%
2023-01-05 02:15:45,123 - INFO - TRAIN phase
2023-01-05 02:15:45,187 - INFO - Epoch 5 - TRAIN - Batch 0 - Loss = 0.735 | Accuracy = 84.375%
2023-01-05 02:15:50,450 - INFO - Epoch 5 - TRAIN - Batch 100 - Loss = 0.396 | Accuracy = 84.375%
2023-01-05 02:15:55,769 - INFO - Epoch 5 - TRAIN - Batch 200 - Loss = 0.449 | Accuracy = 84.375%
2023-01-05 02:16:01,237 - INFO - Epoch 5 - TRAIN - Batch 300 - Loss = 0.353 | Accuracy = 87.5%
2023-01-05 02:16:07,832 - INFO - Epoch 5 - TRAIN - Batch 400 - Loss = 0.564 | Accuracy = 78.125%
2023-01-05 02:16:09,531 - INFO - VAL phase
2023-01-05 02:16:09,587 - INFO - Epoch 5 - VAL - Batch 0 - Loss = 0.337 | Accuracy = 90.625%
2023-01-05 02:16:15,092 - INFO - Epoch 5 - VAL - Batch 100 - Loss = 0.222 | Accuracy = 96.875%
2023-01-05 02:16:15,387 - INFO - TRAIN phase
2023-01-05 02:16:15,460 - INFO - Epoch 6 - TRAIN - Batch 0 - Loss = 0.47 | Accuracy = 87.5%
2023-01-05 02:16:22,367 - INFO - Epoch 6 - TRAIN - Batch 100 - Loss = 0.589 | Accuracy = 90.625%
2023-01-05 02:16:29,371 - INFO - Epoch 6 - TRAIN - Batch 200 - Loss = 0.419 | Accuracy = 87.5%
2023-01-05 02:16:36,148 - INFO - Epoch 6 - TRAIN - Batch 300 - Loss = 0.197 | Accuracy = 93.75%
2023-01-05 02:16:42,859 - INFO - Epoch 6 - TRAIN - Batch 400 - Loss = 0.201 | Accuracy = 90.625%
2023-01-05 02:16:44,484 - INFO - VAL phase
2023-01-05 02:16:44,543 - INFO - Epoch 6 - VAL - Batch 0 - Loss = 0.354 | Accuracy = 90.625%
2023-01-05 02:16:49,849 - INFO - Epoch 6 - VAL - Batch 100 - Loss = 0.138 | Accuracy = 100.0%
2023-01-05 02:16:50,149 - INFO - TRAIN phase
2023-01-05 02:16:50,229 - INFO - Epoch 7 - TRAIN - Batch 0 - Loss = 0.309 | Accuracy = 90.625%
2023-01-05 02:16:57,530 - INFO - Epoch 7 - TRAIN - Batch 100 - Loss = 0.153 | Accuracy = 96.875%
2023-01-05 02:17:04,317 - INFO - Epoch 7 - TRAIN - Batch 200 - Loss = 0.128 | Accuracy = 96.875%
2023-01-05 02:17:11,037 - INFO - Epoch 7 - TRAIN - Batch 300 - Loss = 0.463 | Accuracy = 84.375%
2023-01-05 02:17:17,910 - INFO - Epoch 7 - TRAIN - Batch 400 - Loss = 0.44 | Accuracy = 84.375%
2023-01-05 02:17:19,521 - INFO - VAL phase
2023-01-05 02:17:19,588 - INFO - Epoch 7 - VAL - Batch 0 - Loss = 0.119 | Accuracy = 100.0%
2023-01-05 02:17:25,217 - INFO - Epoch 7 - VAL - Batch 100 - Loss = 0.162 | Accuracy = 96.875%
2023-01-05 02:17:25,517 - INFO - TRAIN phase
2023-01-05 02:17:25,593 - INFO - Epoch 8 - TRAIN - Batch 0 - Loss = 0.119 | Accuracy = 96.875%
2023-01-05 02:17:32,328 - INFO - Epoch 8 - TRAIN - Batch 100 - Loss = 0.362 | Accuracy = 87.5%
2023-01-05 02:17:39,141 - INFO - Epoch 8 - TRAIN - Batch 200 - Loss = 0.204 | Accuracy = 87.5%
2023-01-05 02:17:45,858 - INFO - Epoch 8 - TRAIN - Batch 300 - Loss = 0.259 | Accuracy = 90.625%
2023-01-05 02:17:52,601 - INFO - Epoch 8 - TRAIN - Batch 400 - Loss = 0.245 | Accuracy = 93.75%
2023-01-05 02:17:54,217 - INFO - VAL phase
2023-01-05 02:17:54,281 - INFO - Epoch 8 - VAL - Batch 0 - Loss = 0.171 | Accuracy = 93.75%
2023-01-05 02:17:59,745 - INFO - Epoch 8 - VAL - Batch 100 - Loss = 0.065 | Accuracy = 100.0%
2023-01-05 02:18:00,050 - INFO - TRAIN phase
2023-01-05 02:18:00,138 - INFO - Epoch 9 - TRAIN - Batch 0 - Loss = 0.083 | Accuracy = 96.875%
2023-01-05 02:18:07,297 - INFO - Epoch 9 - TRAIN - Batch 100 - Loss = 0.555 | Accuracy = 90.625%
2023-01-05 02:18:13,999 - INFO - Epoch 9 - TRAIN - Batch 200 - Loss = 0.11 | Accuracy = 96.875%
2023-01-05 02:18:20,827 - INFO - Epoch 9 - TRAIN - Batch 300 - Loss = 0.047 | Accuracy = 100.0%
2023-01-05 02:18:27,618 - INFO - Epoch 9 - TRAIN - Batch 400 - Loss = 0.236 | Accuracy = 96.875%
2023-01-05 02:18:29,228 - INFO - VAL phase
2023-01-05 02:18:29,296 - INFO - Epoch 9 - VAL - Batch 0 - Loss = 0.041 | Accuracy = 100.0%
2023-01-05 02:18:34,680 - INFO - Epoch 9 - VAL - Batch 100 - Loss = 0.08 | Accuracy = 100.0%
2023-01-05 02:18:34,950 - INFO - TRAIN phase
2023-01-05 02:18:35,029 - INFO - Epoch 10 - TRAIN - Batch 0 - Loss = 0.183 | Accuracy = 96.875%
2023-01-05 02:18:41,673 - INFO - Epoch 10 - TRAIN - Batch 100 - Loss = 0.31 | Accuracy = 90.625%
2023-01-05 02:18:48,329 - INFO - Epoch 10 - TRAIN - Batch 200 - Loss = 0.086 | Accuracy = 100.0%
2023-01-05 02:18:55,169 - INFO - Epoch 10 - TRAIN - Batch 300 - Loss = 0.172 | Accuracy = 90.625%
2023-01-05 02:19:01,831 - INFO - Epoch 10 - TRAIN - Batch 400 - Loss = 0.083 | Accuracy = 96.875%
2023-01-05 02:19:03,448 - INFO - VAL phase
2023-01-05 02:19:03,505 - INFO - Epoch 10 - VAL - Batch 0 - Loss = 0.103 | Accuracy = 96.875%
2023-01-05 02:19:09,054 - INFO - Epoch 10 - VAL - Batch 100 - Loss = 0.121 | Accuracy = 96.875%
2023-01-05 02:19:09,410 - INFO - TRAIN phase
2023-01-05 02:19:09,531 - INFO - Epoch 11 - TRAIN - Batch 0 - Loss = 0.155 | Accuracy = 93.75%
2023-01-05 02:19:17,030 - INFO - Epoch 11 - TRAIN - Batch 100 - Loss = 0.185 | Accuracy = 93.75%
2023-01-05 02:19:24,134 - INFO - Epoch 11 - TRAIN - Batch 200 - Loss = 0.09 | Accuracy = 96.875%
2023-01-05 02:19:30,872 - INFO - Epoch 11 - TRAIN - Batch 300 - Loss = 0.117 | Accuracy = 96.875%
2023-01-05 02:19:37,546 - INFO - Epoch 11 - TRAIN - Batch 400 - Loss = 0.06 | Accuracy = 100.0%
2023-01-05 02:19:39,131 - INFO - VAL phase
2023-01-05 02:19:39,188 - INFO - Epoch 11 - VAL - Batch 0 - Loss = 0.066 | Accuracy = 96.875%
2023-01-05 02:19:44,612 - INFO - Epoch 11 - VAL - Batch 100 - Loss = 0.225 | Accuracy = 93.75%
2023-01-05 02:19:44,915 - INFO - TRAIN phase
2023-01-05 02:19:44,987 - INFO - Epoch 12 - TRAIN - Batch 0 - Loss = 0.153 | Accuracy = 93.75%
2023-01-05 02:19:51,778 - INFO - Epoch 12 - TRAIN - Batch 100 - Loss = 0.217 | Accuracy = 93.75%
2023-01-05 02:19:58,458 - INFO - Epoch 12 - TRAIN - Batch 200 - Loss = 0.023 | Accuracy = 100.0%
2023-01-05 02:20:05,163 - INFO - Epoch 12 - TRAIN - Batch 300 - Loss = 0.239 | Accuracy = 90.625%
2023-01-05 02:20:11,837 - INFO - Epoch 12 - TRAIN - Batch 400 - Loss = 0.208 | Accuracy = 90.625%
2023-01-05 02:20:13,471 - INFO - VAL phase
2023-01-05 02:20:13,539 - INFO - Epoch 12 - VAL - Batch 0 - Loss = 0.119 | Accuracy = 96.875%
2023-01-05 02:20:19,061 - INFO - Epoch 12 - VAL - Batch 100 - Loss = 0.096 | Accuracy = 93.75%
2023-01-05 02:20:19,359 - INFO - TRAIN phase
2023-01-05 02:20:19,447 - INFO - Epoch 13 - TRAIN - Batch 0 - Loss = 0.249 | Accuracy = 90.625%
2023-01-05 02:20:24,932 - INFO - Epoch 13 - TRAIN - Batch 100 - Loss = 0.312 | Accuracy = 96.875%
2023-01-05 02:20:30,033 - INFO - Epoch 13 - TRAIN - Batch 200 - Loss = 0.239 | Accuracy = 90.625%
2023-01-05 02:20:35,143 - INFO - Epoch 13 - TRAIN - Batch 300 - Loss = 0.051 | Accuracy = 100.0%
2023-01-05 02:20:40,288 - INFO - Epoch 13 - TRAIN - Batch 400 - Loss = 0.063 | Accuracy = 100.0%
2023-01-05 02:20:41,525 - INFO - VAL phase
2023-01-05 02:20:41,580 - INFO - Epoch 13 - VAL - Batch 0 - Loss = 0.042 | Accuracy = 100.0%
2023-01-05 02:20:46,552 - INFO - Epoch 13 - VAL - Batch 100 - Loss = 0.189 | Accuracy = 93.75%
2023-01-05 02:20:46,803 - INFO - TRAIN phase
2023-01-05 02:20:46,868 - INFO - Epoch 14 - TRAIN - Batch 0 - Loss = 0.131 | Accuracy = 96.875%
2023-01-05 02:20:52,046 - INFO - Epoch 14 - TRAIN - Batch 100 - Loss = 0.122 | Accuracy = 96.875%
2023-01-05 02:20:57,355 - INFO - Epoch 14 - TRAIN - Batch 200 - Loss = 0.028 | Accuracy = 100.0%
2023-01-05 02:21:02,607 - INFO - Epoch 14 - TRAIN - Batch 300 - Loss = 0.38 | Accuracy = 84.375%
2023-01-05 02:21:07,999 - INFO - Epoch 14 - TRAIN - Batch 400 - Loss = 0.125 | Accuracy = 96.875%
2023-01-05 02:21:09,409 - INFO - VAL phase
2023-01-05 02:21:09,465 - INFO - Epoch 14 - VAL - Batch 0 - Loss = 0.155 | Accuracy = 96.875%
2023-01-05 02:21:14,908 - INFO - Epoch 14 - VAL - Batch 100 - Loss = 0.094 | Accuracy = 93.75%
2023-01-05 02:21:15,216 - INFO - TRAIN phase
2023-01-05 02:21:15,316 - INFO - Epoch 15 - TRAIN - Batch 0 - Loss = 0.094 | Accuracy = 96.875%
2023-01-05 02:21:22,818 - INFO - Epoch 15 - TRAIN - Batch 100 - Loss = 0.025 | Accuracy = 100.0%
2023-01-05 02:21:29,898 - INFO - Epoch 15 - TRAIN - Batch 200 - Loss = 0.184 | Accuracy = 93.75%
2023-01-05 02:21:36,685 - INFO - Epoch 15 - TRAIN - Batch 300 - Loss = 0.078 | Accuracy = 96.875%
2023-01-05 02:21:43,467 - INFO - Epoch 15 - TRAIN - Batch 400 - Loss = 0.124 | Accuracy = 96.875%
2023-01-05 02:21:45,083 - INFO - VAL phase
2023-01-05 02:21:45,140 - INFO - Epoch 15 - VAL - Batch 0 - Loss = 0.068 | Accuracy = 96.875%
2023-01-05 02:21:50,597 - INFO - Epoch 15 - VAL - Batch 100 - Loss = 0.027 | Accuracy = 100.0%
2023-01-05 02:21:50,896 - INFO - TRAIN phase
2023-01-05 02:21:50,977 - INFO - Epoch 16 - TRAIN - Batch 0 - Loss = 0.261 | Accuracy = 93.75%
2023-01-05 02:21:57,785 - INFO - Epoch 16 - TRAIN - Batch 100 - Loss = 0.116 | Accuracy = 93.75%
2023-01-05 02:22:04,469 - INFO - Epoch 16 - TRAIN - Batch 200 - Loss = 0.089 | Accuracy = 93.75%
2023-01-05 02:22:11,198 - INFO - Epoch 16 - TRAIN - Batch 300 - Loss = 0.184 | Accuracy = 96.875%
2023-01-05 02:22:17,933 - INFO - Epoch 16 - TRAIN - Batch 400 - Loss = 0.05 | Accuracy = 100.0%
2023-01-05 02:22:19,556 - INFO - VAL phase
2023-01-05 02:22:19,615 - INFO - Epoch 16 - VAL - Batch 0 - Loss = 0.116 | Accuracy = 96.875%
2023-01-05 02:22:25,161 - INFO - Epoch 16 - VAL - Batch 100 - Loss = 0.038 | Accuracy = 100.0%
2023-01-05 02:22:25,461 - INFO - TRAIN phase
2023-01-05 02:22:25,552 - INFO - Epoch 17 - TRAIN - Batch 0 - Loss = 0.031 | Accuracy = 100.0%
2023-01-05 02:22:32,825 - INFO - Epoch 17 - TRAIN - Batch 100 - Loss = 0.15 | Accuracy = 93.75%
2023-01-05 02:22:39,548 - INFO - Epoch 17 - TRAIN - Batch 200 - Loss = 0.433 | Accuracy = 90.625%
2023-01-05 02:22:46,312 - INFO - Epoch 17 - TRAIN - Batch 300 - Loss = 0.037 | Accuracy = 100.0%
2023-01-05 02:22:53,015 - INFO - Epoch 17 - TRAIN - Batch 400 - Loss = 0.192 | Accuracy = 93.75%
2023-01-05 02:22:54,653 - INFO - VAL phase
2023-01-05 02:22:54,699 - INFO - Epoch 17 - VAL - Batch 0 - Loss = 0.043 | Accuracy = 100.0%
2023-01-05 02:23:00,109 - INFO - Epoch 17 - VAL - Batch 100 - Loss = 0.037 | Accuracy = 100.0%
2023-01-05 02:23:00,385 - INFO - TRAIN phase
2023-01-05 02:23:00,458 - INFO - Epoch 18 - TRAIN - Batch 0 - Loss = 0.253 | Accuracy = 93.75%
2023-01-05 02:23:07,206 - INFO - Epoch 18 - TRAIN - Batch 100 - Loss = 0.325 | Accuracy = 93.75%
2023-01-05 02:23:13,836 - INFO - Epoch 18 - TRAIN - Batch 200 - Loss = 0.015 | Accuracy = 100.0%
2023-01-05 02:23:20,695 - INFO - Epoch 18 - TRAIN - Batch 300 - Loss = 0.14 | Accuracy = 90.625%
2023-01-05 02:23:27,388 - INFO - Epoch 18 - TRAIN - Batch 400 - Loss = 0.086 | Accuracy = 100.0%
2023-01-05 02:23:29,040 - INFO - VAL phase
2023-01-05 02:23:29,101 - INFO - Epoch 18 - VAL - Batch 0 - Loss = 0.132 | Accuracy = 93.75%
2023-01-05 02:23:34,433 - INFO - Epoch 18 - VAL - Batch 100 - Loss = 0.163 | Accuracy = 93.75%
2023-01-05 02:23:34,719 - INFO - TRAIN phase
2023-01-05 02:23:34,792 - INFO - Epoch 19 - TRAIN - Batch 0 - Loss = 0.053 | Accuracy = 96.875%
2023-01-05 02:23:41,450 - INFO - Epoch 19 - TRAIN - Batch 100 - Loss = 0.253 | Accuracy = 96.875%
2023-01-05 02:23:48,095 - INFO - Epoch 19 - TRAIN - Batch 200 - Loss = 0.107 | Accuracy = 96.875%
2023-01-05 02:23:54,842 - INFO - Epoch 19 - TRAIN - Batch 300 - Loss = 0.004 | Accuracy = 100.0%
2023-01-05 02:24:01,659 - INFO - Epoch 19 - TRAIN - Batch 400 - Loss = 0.068 | Accuracy = 96.875%
2023-01-05 02:24:03,504 - INFO - VAL phase
2023-01-05 02:24:03,567 - INFO - Epoch 19 - VAL - Batch 0 - Loss = 0.677 | Accuracy = 93.75%
2023-01-05 02:24:09,055 - INFO - Epoch 19 - VAL - Batch 100 - Loss = 0.015 | Accuracy = 100.0%
2023-01-05 02:24:09,371 - INFO - TRAIN phase
2023-01-05 02:24:09,463 - INFO - Epoch 20 - TRAIN - Batch 0 - Loss = 0.067 | Accuracy = 100.0%
2023-01-05 02:24:16,520 - INFO - Epoch 20 - TRAIN - Batch 100 - Loss = 0.07 | Accuracy = 100.0%
2023-01-05 02:24:23,168 - INFO - Epoch 20 - TRAIN - Batch 200 - Loss = 0.081 | Accuracy = 100.0%
2023-01-05 02:24:29,900 - INFO - Epoch 20 - TRAIN - Batch 300 - Loss = 0.129 | Accuracy = 96.875%
2023-01-05 02:24:37,273 - INFO - Epoch 20 - TRAIN - Batch 400 - Loss = 0.056 | Accuracy = 96.875%
2023-01-05 02:24:39,092 - INFO - VAL phase
2023-01-05 02:24:39,166 - INFO - Epoch 20 - VAL - Batch 0 - Loss = 0.357 | Accuracy = 93.75%
2023-01-05 02:24:46,786 - INFO - Epoch 20 - VAL - Batch 100 - Loss = 0.07 | Accuracy = 100.0%
2023-01-05 02:24:47,074 - INFO - TRAIN phase
2023-01-05 02:24:47,144 - INFO - Epoch 21 - TRAIN - Batch 0 - Loss = 0.116 | Accuracy = 96.875%
2023-01-05 02:24:54,208 - INFO - Epoch 21 - TRAIN - Batch 100 - Loss = 0.117 | Accuracy = 93.75%
2023-01-05 02:25:01,012 - INFO - Epoch 21 - TRAIN - Batch 200 - Loss = 0.111 | Accuracy = 96.875%
2023-01-05 02:25:07,726 - INFO - Epoch 21 - TRAIN - Batch 300 - Loss = 0.03 | Accuracy = 100.0%
2023-01-05 02:25:14,537 - INFO - Epoch 21 - TRAIN - Batch 400 - Loss = 0.277 | Accuracy = 90.625%
2023-01-05 02:25:16,150 - INFO - VAL phase
2023-01-05 02:25:16,204 - INFO - Epoch 21 - VAL - Batch 0 - Loss = 0.04 | Accuracy = 100.0%
2023-01-05 02:25:21,644 - INFO - Epoch 21 - VAL - Batch 100 - Loss = 0.029 | Accuracy = 100.0%
2023-01-05 02:25:21,947 - INFO - TRAIN phase
2023-01-05 02:25:22,022 - INFO - Epoch 22 - TRAIN - Batch 0 - Loss = 0.024 | Accuracy = 96.875%
2023-01-05 02:25:28,757 - INFO - Epoch 22 - TRAIN - Batch 100 - Loss = 0.025 | Accuracy = 100.0%
2023-01-05 02:25:35,481 - INFO - Epoch 22 - TRAIN - Batch 200 - Loss = 0.16 | Accuracy = 93.75%
2023-01-05 02:25:42,234 - INFO - Epoch 22 - TRAIN - Batch 300 - Loss = 0.473 | Accuracy = 87.5%
2023-01-05 02:25:48,980 - INFO - Epoch 22 - TRAIN - Batch 400 - Loss = 0.032 | Accuracy = 100.0%
2023-01-05 02:25:50,590 - INFO - VAL phase
2023-01-05 02:25:50,654 - INFO - Epoch 22 - VAL - Batch 0 - Loss = 0.045 | Accuracy = 96.875%
2023-01-05 02:25:56,118 - INFO - Epoch 22 - VAL - Batch 100 - Loss = 0.115 | Accuracy = 93.75%
2023-01-05 02:25:56,391 - INFO - TRAIN phase
2023-01-05 02:25:56,491 - INFO - Epoch 23 - TRAIN - Batch 0 - Loss = 0.066 | Accuracy = 96.875%
2023-01-05 02:26:03,868 - INFO - Epoch 23 - TRAIN - Batch 100 - Loss = 0.141 | Accuracy = 93.75%
2023-01-05 02:26:10,572 - INFO - Epoch 23 - TRAIN - Batch 200 - Loss = 0.083 | Accuracy = 96.875%
2023-01-05 02:26:17,329 - INFO - Epoch 23 - TRAIN - Batch 300 - Loss = 0.114 | Accuracy = 96.875%
2023-01-05 02:26:24,090 - INFO - Epoch 23 - TRAIN - Batch 400 - Loss = 0.304 | Accuracy = 96.875%
2023-01-05 02:26:25,694 - INFO - VAL phase
2023-01-05 02:26:25,754 - INFO - Epoch 23 - VAL - Batch 0 - Loss = 0.045 | Accuracy = 96.875%
2023-01-05 02:26:31,192 - INFO - Epoch 23 - VAL - Batch 100 - Loss = 0.14 | Accuracy = 96.875%
2023-01-05 02:26:31,466 - INFO - TRAIN phase
2023-01-05 02:26:31,540 - INFO - Epoch 24 - TRAIN - Batch 0 - Loss = 0.019 | Accuracy = 100.0%
2023-01-05 02:26:38,284 - INFO - Epoch 24 - TRAIN - Batch 100 - Loss = 0.065 | Accuracy = 96.875%
2023-01-05 02:26:45,000 - INFO - Epoch 24 - TRAIN - Batch 200 - Loss = 0.039 | Accuracy = 100.0%
2023-01-05 02:26:51,860 - INFO - Epoch 24 - TRAIN - Batch 300 - Loss = 0.154 | Accuracy = 93.75%
2023-01-05 02:26:58,681 - INFO - Epoch 24 - TRAIN - Batch 400 - Loss = 0.092 | Accuracy = 96.875%
2023-01-05 02:27:00,306 - INFO - VAL phase
2023-01-05 02:27:00,361 - INFO - Epoch 24 - VAL - Batch 0 - Loss = 0.429 | Accuracy = 90.625%
2023-01-05 02:27:05,841 - INFO - Epoch 24 - VAL - Batch 100 - Loss = 0.056 | Accuracy = 100.0%