Spaces:
Sleeping
Sleeping
File size: 12,598 Bytes
6d653b3 1994657 67dd542 6d653b3 1994657 e945d50 f4f946e 1994657 23e1d87 1994657 a96ed1b 2442c76 1994657 f4f946e 8702989 1994657 f4f946e 1994657 f4f946e 67dd542 23e1d87 e945d50 1994657 d8c637e 23e1d87 e945d50 1994657 1ccdaa7 1994657 6d653b3 1994657 1ccdaa7 1994657 1ccdaa7 1994657 1ccdaa7 e945d50 1ccdaa7 23e1d87 e945d50 23e1d87 1994657 23e1d87 1994657 23e1d87 1994657 e945d50 1994657 23e1d87 1994657 23e1d87 1994657 e945d50 1994657 0d8e806 e945d50 1994657 0d8e806 23e1d87 0d8e806 1994657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import os
from typing import Optional, Dict, Any, List
from fastapi import FastAPI, HTTPException, status, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
import logging
import sys
from pydantic import BaseModel, Field, validator
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config
from contextlib import asynccontextmanager
import asyncio
from functools import lru_cache
import numpy as np
from datetime import datetime
import re
# Constants
BASE_MODEL_DIR = "./models/"
MODEL_PATH = os.path.join(BASE_MODEL_DIR, "poeticagpt.pth")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
BATCH_SIZE = 4
CACHE_SIZE = 1024
MODEL_CONFIG = GPT2Config(
n_positions=400,
n_ctx=400,
n_embd=384,
n_layer=6,
n_head=6,
vocab_size=50257,
bos_token_id=50256,
eos_token_id=50256,
use_cache=True,
)
class GenerateRequest(BaseModel):
prompt: str = Field(..., min_length=1, max_length=500)
max_length: Optional[int] = Field(default=100, ge=10, le=500)
temperature: float = Field(default=0.9, ge=0.1, le=2.0)
top_k: int = Field(default=50, ge=1, le=100)
top_p: float = Field(default=0.95, ge=0.1, le=1.0)
repetition_penalty: float = Field(default=1.2, ge=1.0, le=2.0)
style: Optional[str] = Field(default="free_verse",
description="Poetry style: free_verse, haiku, sonnet")
@validator('prompt')
def validate_prompt(cls, v):
v = ' '.join(v.split())
return v
class PoemFormatter:
"""Handles poem formatting and processing"""
@staticmethod
def format_free_verse(text: str) -> List[str]:
lines = re.split(r'[.!?]+|\n+', text)
lines = [line.strip() for line in lines if line.strip()]
formatted_lines = []
for line in lines:
if len(line) > 40:
parts = line.split(',')
formatted_lines.extend(part.strip() for part in parts if part.strip())
else:
formatted_lines.append(line)
return formatted_lines
@staticmethod
def format_haiku(text: str) -> List[str]:
words = text.split()
lines = []
current_line = []
syllable_count = 0
for word in words:
syllables = len(re.findall(r'[aeiou]+', word.lower()))
if syllable_count + syllables <= 5 and len(lines) == 0:
current_line.append(word)
syllable_count += syllables
elif syllable_count + syllables <= 7 and len(lines) == 1:
current_line.append(word)
syllable_count += syllables
elif syllable_count + syllables <= 5 and len(lines) == 2:
current_line.append(word)
syllable_count += syllables
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
syllable_count = syllables
if len(lines) == 3:
break
if current_line and len(lines) < 3:
lines.append(' '.join(current_line))
return lines[:3]
@staticmethod
def format_sonnet(text: str) -> List[str]:
words = text.split()
lines = []
current_line = []
target_line_length = 10
for word in words:
current_line.append(word)
if len(current_line) >= target_line_length:
lines.append(' '.join(current_line))
current_line = []
if len(lines) >= 14:
break
if current_line and len(lines) < 14:
lines.append(' '.join(current_line))
return lines[:14]
class ModelManager:
def __init__(self):
self.model = None
self.tokenizer = None
self._lock = asyncio.Lock()
self.request_count = 0
self.last_cleanup = datetime.now()
self.poem_formatter = PoemFormatter()
async def initialize(self) -> bool:
try:
self._setup_logging()
logger.info(f"Initializing model on device: {DEVICE}")
self.tokenizer = await self._load_tokenizer()
await self._load_and_optimize_model()
logger.info("Model and tokenizer loaded successfully")
return True
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
logger.exception("Detailed traceback:")
return False
@staticmethod
def _setup_logging():
global logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handlers = [logging.StreamHandler(sys.stdout)]
try:
log_dir = os.path.join(os.getcwd(), 'logs')
os.makedirs(log_dir, exist_ok=True)
handlers.append(logging.FileHandler(
os.path.join(log_dir, f'poetry_generation_{datetime.now().strftime("%Y%m%d")}.log')
))
except Exception as e:
print(f"Warning: Could not create log file: {e}")
for handler in handlers:
handler.setFormatter(formatter)
logger.addHandler(handler)
@lru_cache(maxsize=CACHE_SIZE)
async def _load_tokenizer(self):
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
async def _load_and_optimize_model(self):
if not os.path.exists(MODEL_PATH):
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}")
self.model = GPT2LMHeadModel(MODEL_CONFIG)
state_dict = torch.load(MODEL_PATH, map_location=DEVICE)
self.model.load_state_dict(state_dict, strict=False)
self.model.to(DEVICE)
self.model.eval()
if DEVICE.type == 'cuda':
torch.backends.cudnn.benchmark = True
self.model = torch.jit.script(self.model)
dummy_input = torch.zeros((1, 1), dtype=torch.long, device=DEVICE)
with torch.no_grad():
self.model(dummy_input)
@torch.no_grad()
async def generate(self, request: GenerateRequest) -> Dict[str, Any]:
async with self._lock:
try:
self.request_count += 1
await self._check_cleanup()
inputs = await self._prepare_inputs(request.prompt)
outputs = await self._generate_optimized(inputs, request)
return await self._process_outputs(outputs, request)
except Exception as e:
logger.error(f"Error generating text: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e)
)
async def _prepare_inputs(self, prompt: str):
poetry_prompt = f"Write a poem about: {prompt}\n\nPoem:"
tokens = self.tokenizer.encode(poetry_prompt, return_tensors='pt')
return tokens.to(DEVICE)
async def _generate_optimized(self, inputs, request: GenerateRequest):
attention_mask = torch.ones(inputs.shape, dtype=torch.long, device=DEVICE)
style_params = {
"haiku": {"max_length": 50, "repetition_penalty": 1.3},
"sonnet": {"max_length": 200, "repetition_penalty": 1.2},
"free_verse": {"max_length": request.max_length, "repetition_penalty": request.repetition_penalty}
}
params = style_params.get(request.style, style_params["free_verse"])
return self.model.generate(
inputs,
attention_mask=attention_mask,
max_length=params["max_length"],
num_return_sequences=1,
temperature=request.temperature,
top_k=request.top_k,
top_p=request.top_p,
repetition_penalty=params["repetition_penalty"],
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
use_cache=True,
no_repeat_ngram_size=3,
early_stopping=True,
bad_words_ids=[[self.tokenizer.encode(word)[0]] for word in
['http', 'www', 'com', ':', '/', '#']],
min_length=20,
)
async def _process_outputs(self, outputs, request: GenerateRequest):
raw_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
prompt_pattern = f"Write a poem about: {request.prompt}\n\nPoem:"
poem_text = raw_text.replace(prompt_pattern, '').strip()
if request.style == "haiku":
formatted_lines = PoemFormatter.format_haiku(poem_text)
elif request.style == "sonnet":
formatted_lines = PoemFormatter.format_sonnet(poem_text)
else:
formatted_lines = PoemFormatter.format_free_verse(poem_text)
return {
"poem": {
"title": self._generate_title(poem_text),
"lines": formatted_lines,
"style": request.style
},
"original_prompt": request.prompt,
"parameters": {
"max_length": request.max_length,
"temperature": request.temperature,
"top_k": request.top_k,
"top_p": request.top_p,
"repetition_penalty": request.repetition_penalty
},
"metadata": {
"device": DEVICE.type,
"model_type": "GPT2",
"timestamp": datetime.now().isoformat()
}
}
def _generate_title(self, poem_text: str) -> str:
words = poem_text.split()[:6]
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to'}
key_words = [word for word in words if word.lower() not in stop_words]
if key_words:
title = ' '.join(key_words[:3]).capitalize()
return title
return "Untitled"
async def _check_cleanup(self):
if self.request_count % 100 == 0:
if DEVICE.type == 'cuda':
torch.cuda.empty_cache()
self.last_cleanup = datetime.now()
@asynccontextmanager
async def lifespan(app: FastAPI):
if not await model_manager.initialize():
logger.error("Failed to initialize model manager")
yield
if model_manager.model is not None:
del model_manager.model
if model_manager.tokenizer is not None:
del model_manager.tokenizer
if DEVICE.type == 'cuda':
torch.cuda.empty_cache()
app = FastAPI(
title="Poetry Generation API",
description="Optimized API for generating poetry using GPT-2",
version="2.0.0",
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
model_manager = ModelManager()
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"model_loaded": model_manager.model is not None,
"tokenizer_loaded": model_manager.tokenizer is not None,
"device": DEVICE.type,
"request_count": model_manager.request_count,
"last_cleanup": model_manager.last_cleanup.isoformat(),
"system_info": {
"cuda_available": torch.cuda.is_available(),
"cuda_device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
}
}
@app.post("/generate")
async def generate_text(
request: GenerateRequest,
background_tasks: BackgroundTasks
):
try:
result = await model_manager.generate(request)
if model_manager.request_count % 100 == 0:
background_tasks.add_task(torch.cuda.empty_cache)
return JSONResponse(
content=result,
status_code=status.HTTP_200_OK
)
except Exception as e:
logger.error(f"Error in generate_text: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e)
) |