Spaces:
Running
Running
File size: 26,225 Bytes
6d653b3 67dd542 6d653b3 a22b331 e945d50 1994657 a22b331 36d6b8e a22b331 23e1d87 a22b331 1994657 36d6b8e a22b331 36d6b8e 67dd542 a22b331 23e1d87 e945d50 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 d8c637e a22b331 23e1d87 1994657 a22b331 1994657 a22b331 1ccdaa7 1994657 6d653b3 a22b331 1ccdaa7 36d6b8e a22b331 1994657 1ccdaa7 a22b331 e945d50 1ccdaa7 23e1d87 e945d50 23e1d87 a22b331 23e1d87 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 36d6b8e a22b331 36d6b8e a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 23e1d87 1994657 a22b331 1994657 a22b331 1994657 a22b331 23e1d87 a22b331 1994657 a22b331 e945d50 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 1994657 a22b331 2b79bbe 0d8e806 e945d50 a22b331 1994657 a22b331 1994657 a22b331 1994657 0d8e806 23e1d87 a22b331 0d8e806 1994657 a22b331 1994657 a22b331 1994657 a22b331 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
import os
import logging
import sys
from datetime import datetime
from typing import Optional, Dict, Any, List
from functools import lru_cache
import torch
import asyncio
import numpy as np
import re
from fastapi import FastAPI, HTTPException, status, BackgroundTasks, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field, validator
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config
from contextlib import asynccontextmanager
# Configuration
class Config:
BASE_MODEL_DIR = "./models/"
MODEL_PATH = os.path.join(BASE_MODEL_DIR, "poeticagpt.pth")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
BATCH_SIZE = 8 # Increased batch size for better throughput
CACHE_SIZE = 2048 # Increased cache size
MAX_QUEUE_SIZE = 16 # Maximum number of requests to queue
QUANTIZE_MODEL = True # Enable quantization for improved performance
WARMUP_INPUTS = True # Pre-warm the model with sample inputs
# Use environment-specific log directory or default to a temp directory
LOG_DIR = os.environ.get('LOG_DIR', '/tmp/poetry_logs')
ENABLE_PROFILING = False # Set to True to enable performance profiling
REQUEST_TIMEOUT = 30.0 # Timeout for request processing in seconds
MODEL_CONFIG = GPT2Config(
n_positions=400,
n_ctx=400,
n_embd=384,
n_layer=6,
n_head=6,
vocab_size=50257,
bos_token_id=50256,
eos_token_id=50256,
use_cache=True,
)
config = Config()
# Configure logging with proper error handling
def setup_logging():
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Always add stdout handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# Try to set up file handler, but handle permission issues gracefully
try:
# Attempt to create directory if it doesn't exist
os.makedirs(config.LOG_DIR, exist_ok=True)
log_file = os.path.join(
config.LOG_DIR,
f'poetry_generation_{datetime.now().strftime("%Y%m%d")}.log'
)
# Test if we can write to the file
with open(log_file, 'a') as f:
pass
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
print(f"Log file created at: {log_file}")
except (PermissionError, OSError) as e:
print(f"Warning: Could not create log file: {e}")
print(f"Continuing with console logging only.")
return logger
# Initialize logger
logger = setup_logging()
# Request models
class GenerateRequest(BaseModel):
prompt: str = Field(..., min_length=1, max_length=500)
max_length: Optional[int] = Field(default=100, ge=10, le=500)
temperature: float = Field(default=0.9, ge=0.1, le=2.0)
top_k: int = Field(default=50, ge=1, le=100)
top_p: float = Field(default=0.95, ge=0.1, le=1.0)
repetition_penalty: float = Field(default=1.2, ge=1.0, le=2.0)
style: Optional[str] = Field(default="free_verse",
description="Poetry style: free_verse, haiku, sonnet")
@validator('prompt')
def validate_prompt(cls, v):
# Normalize whitespace
v = ' '.join(v.split())
return v
# Poem formatting module
class PoemFormatter:
"""Efficient poem formatter with optimized text processing"""
@staticmethod
def format_free_verse(text: str) -> List[str]:
# More efficient regex splitting
lines = re.split(r'[.!?]+|\n+', text)
lines = [line.strip() for line in lines if line.strip()]
formatted_lines = []
for line in lines:
if len(line) > 40:
parts = line.split(',')
formatted_lines.extend(part.strip() for part in parts if part.strip())
else:
formatted_lines.append(line)
return formatted_lines
@staticmethod
def format_haiku(text: str) -> List[str]:
# Precompile regex for performance
vowel_pattern = re.compile(r'[aeiou]+')
words = text.split()
lines = []
current_line = []
syllable_count = 0
syllable_targets = [5, 7, 5] # Traditional haiku structure
current_target_idx = 0
for word in words:
syllables = len(vowel_pattern.findall(word.lower())) or 1 # Ensure at least 1 syllable
if current_target_idx >= len(syllable_targets):
break
current_target = syllable_targets[current_target_idx]
if syllable_count + syllables <= current_target:
current_line.append(word)
syllable_count += syllables
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
syllable_count = syllables
current_target_idx += 1
if current_line and len(lines) < len(syllable_targets):
lines.append(' '.join(current_line))
# Ensure we have exactly 3 lines for a haiku
while len(lines) < 3:
lines.append("...")
return lines[:3]
@staticmethod
def format_sonnet(text: str) -> List[str]:
words = text.split()
lines = []
current_line = []
target_line_length = 10 # Approximate iambic pentameter
for word in words:
current_line.append(word)
if len(current_line) >= target_line_length:
lines.append(' '.join(current_line))
current_line = []
if len(lines) >= 14: # Traditional sonnet has 14 lines
break
if current_line and len(lines) < 14:
lines.append(' '.join(current_line))
# Ensure we have 14 lines for a complete sonnet
while len(lines) < 14:
lines.append("...")
return lines
@staticmethod
def generate_title(poem_text: str) -> str:
words = poem_text.split()[:10] # Use more words to find better title candidates
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'with', 'by'}
key_words = [word for word in words if word.lower() not in stop_words and len(word) > 2]
if key_words:
title = ' '.join(key_words[:3]).strip().capitalize()
return title if title else "Untitled"
return "Untitled"
# Request queue for efficient processing
class RequestQueue:
def __init__(self, max_size=config.MAX_QUEUE_SIZE):
self.queue = asyncio.Queue(maxsize=max_size)
self.semaphore = asyncio.Semaphore(max_size)
async def add_request(self, request_data):
async with self.semaphore:
return await asyncio.wait_for(
self._process_request(request_data),
timeout=config.REQUEST_TIMEOUT
)
async def _process_request(self, request_data):
future = asyncio.Future()
await self.queue.put((request_data, future))
return await future
# Optimized Tokenization Service
class TokenizationService:
def __init__(self):
self.tokenizer = None
self._lock = asyncio.Lock()
@lru_cache(maxsize=config.CACHE_SIZE)
def cached_tokenize(self, text):
return self.tokenizer.encode(text, return_tensors='pt')
async def initialize(self):
async with self._lock:
if self.tokenizer is None:
logger.info("Initializing tokenizer")
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
self.tokenizer.pad_token = self.tokenizer.eos_token
return self.tokenizer
async def encode(self, text):
if not self.tokenizer:
await self.initialize()
# Use multithreading for tokenization if the text is large
if len(text) > 100:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
None,
lambda: self.cached_tokenize(text)
)
else:
return self.cached_tokenize(text)
def decode(self, tokens, skip_special_tokens=True):
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
# Model Manager with optimization techniques
class ModelManager:
def __init__(self):
self.model = None
self._lock = asyncio.Lock()
self.request_count = 0
self.last_cleanup = datetime.now()
self.model_ready = asyncio.Event()
self.tokenization_service = TokenizationService()
self.request_queue = RequestQueue()
self.poem_formatter = PoemFormatter()
self.batch_processor_task = None
async def initialize(self) -> bool:
try:
logger.info(f"Initializing model on device: {config.DEVICE}")
# Check if model file exists
if not os.path.exists(config.MODEL_PATH):
logger.error(f"Model file not found at {config.MODEL_PATH}")
# Try to create directory in case it doesn't exist
os.makedirs(os.path.dirname(config.MODEL_PATH), exist_ok=True)
return False
await self.tokenization_service.initialize()
await self._load_and_optimize_model()
# Start batch processing worker
self.batch_processor_task = asyncio.create_task(self._batch_processor_worker())
logger.info(f"Model and tokenizer loaded successfully on {config.DEVICE}")
self.model_ready.set()
# Warmup the model with dummy inputs
if config.WARMUP_INPUTS:
await self._warmup_model()
return True
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
logger.exception("Detailed traceback:")
return False
async def _batch_processor_worker(self):
"""Worker that processes queued requests in batches"""
logger.info("Starting batch processor worker")
try:
while True:
# Process requests in batches when possible
if not self.request_queue.queue.empty():
batch = []
batch_futures = []
# Get up to BATCH_SIZE requests from the queue
batch_size = min(config.BATCH_SIZE, self.request_queue.queue.qsize())
for _ in range(batch_size):
if self.request_queue.queue.empty():
break
request_data, future = await self.request_queue.queue.get()
batch.append(request_data)
batch_futures.append(future)
if batch:
try:
# Process the batch
results = await self._process_batch(batch)
# Set results to futures
for i, future in enumerate(batch_futures):
if not future.done():
future.set_result(results[i])
except Exception as e:
# Set exception to all futures in the batch
for future in batch_futures:
if not future.done():
future.set_exception(e)
finally:
# Mark tasks as done
for _ in range(len(batch)):
self.request_queue.queue.task_done()
else:
# If queue is empty, sleep briefly before checking again
await asyncio.sleep(0.01)
except asyncio.CancelledError:
logger.info("Batch processor worker cancelled")
except Exception as e:
logger.error(f"Error in batch processor worker: {str(e)}")
logger.exception("Detailed traceback")
async def _process_batch(self, batch_requests):
"""Process a batch of requests efficiently"""
results = []
# Use with torch.no_grad() for all requests in the batch
with torch.no_grad():
for request in batch_requests:
try:
# Prepare inputs
inputs = await self._prepare_inputs(request.prompt)
# Generate text
outputs = await self._generate_optimized(inputs, request)
# Process outputs
result = await self._process_outputs(outputs, request)
results.append(result)
except Exception as e:
logger.error(f"Error processing request in batch: {str(e)}")
results.append({"error": str(e)})
return results
async def _load_and_optimize_model(self):
"""Load and optimize the model with advanced techniques"""
async with self._lock:
if not os.path.exists(config.MODEL_PATH):
raise FileNotFoundError(f"Model file not found at {config.MODEL_PATH}")
# Create model with configuration
self.model = GPT2LMHeadModel(config.MODEL_CONFIG)
# Load state dict
state_dict = torch.load(config.MODEL_PATH, map_location=config.DEVICE)
self.model.load_state_dict(state_dict, strict=False)
# Move model to device
self.model.to(config.DEVICE)
self.model.eval() # Set to evaluation mode
# Apply quantization if enabled and supported
if config.QUANTIZE_MODEL and config.DEVICE.type == 'cuda':
try:
# Use dynamic quantization for better inference performance
torch.quantization.quantize_dynamic(
self.model, {torch.nn.Linear}, dtype=torch.qint8
)
logger.info("Model quantized successfully")
except Exception as e:
logger.warning(f"Quantization failed, using full precision: {str(e)}")
# Apply other optimizations for CUDA devices
if config.DEVICE.type == 'cuda':
# Set optimization flags
torch.backends.cudnn.benchmark = True
# Enable TF32 precision if available (on A100 GPUs)
if hasattr(torch.backends.cuda, 'matmul') and hasattr(torch.backends.cuda.matmul, 'allow_tf32'):
torch.backends.cuda.matmul.allow_tf32 = True
# Convert model to TorchScript for faster inference
try:
# Use a safer approach to TorchScript optimization
self.model = torch.jit.script(self.model)
logger.info("Model optimized with TorchScript")
except Exception as e:
logger.warning(f"TorchScript optimization failed: {str(e)}")
async def _warmup_model(self):
"""Pre-warm the model with sample inputs to eliminate cold start issues"""
logger.info("Warming up model...")
# Create dummy inputs of different lengths
dummy_texts = [
"Write a poem about nature",
"Write a poem about love and loss in the modern world"
]
# Process dummy requests
dummy_requests = [
GenerateRequest(prompt=text, max_length=50, temperature=0.9)
for text in dummy_texts
]
for req in dummy_requests:
try:
with torch.no_grad():
# Prepare inputs
inputs = await self._prepare_inputs(req.prompt)
# Run model inference
_ = await self._generate_optimized(inputs, req)
except Exception as e:
logger.warning(f"Model warmup error: {str(e)}")
logger.info("Model warmup completed")
async def _prepare_inputs(self, prompt: str):
"""Prepare model inputs with optimized tokenization"""
poetry_prompt = f"Write a poem about: {prompt}\n\nPoem:"
tokens = await self.tokenization_service.encode(poetry_prompt)
return tokens.to(config.DEVICE)
async def _generate_optimized(self, inputs, request: GenerateRequest):
"""Optimized text generation with style-specific parameters"""
attention_mask = torch.ones(inputs.shape, dtype=torch.long, device=config.DEVICE)
# Style-specific parameters
style_params = {
"haiku": {"max_length": 50, "repetition_penalty": 1.4, "no_repeat_ngram_size": 2},
"sonnet": {"max_length": 200, "repetition_penalty": 1.2, "no_repeat_ngram_size": 3},
"free_verse": {
"max_length": request.max_length,
"repetition_penalty": request.repetition_penalty,
"no_repeat_ngram_size": 3
}
}
params = style_params.get(request.style, style_params["free_verse"])
# Get bad word IDs for filtering
tokenizer = await self.tokenization_service.initialize()
bad_words = ['http', 'www', 'com', ':', '/', '#', '[', ']', '{', '}']
bad_words_ids = [[tokenizer.encode(word)[0]] for word in bad_words if len(tokenizer.encode(word)) > 0]
return self.model.generate(
inputs,
attention_mask=attention_mask,
max_length=params["max_length"],
num_return_sequences=1,
temperature=request.temperature,
top_k=request.top_k,
top_p=request.top_p,
repetition_penalty=params["repetition_penalty"],
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
use_cache=True,
no_repeat_ngram_size=params["no_repeat_ngram_size"],
early_stopping=True,
bad_words_ids=bad_words_ids,
min_length=20 if request.style != "haiku" else 10,
)
async def _process_outputs(self, outputs, request: GenerateRequest):
"""Process and format the generated text into a poem"""
# Decode generated text
raw_text = self.tokenization_service.decode(outputs[0], skip_special_tokens=True)
# Extract poem from generated text
prompt_pattern = f"Write a poem about: {request.prompt}\n\nPoem:"
poem_text = raw_text.replace(prompt_pattern, '').strip()
# Format based on style
if request.style == "haiku":
formatted_lines = self.poem_formatter.format_haiku(poem_text)
elif request.style == "sonnet":
formatted_lines = self.poem_formatter.format_sonnet(poem_text)
else:
formatted_lines = self.poem_formatter.format_free_verse(poem_text)
# Generate response
return {
"poem": {
"title": self.poem_formatter.generate_title(poem_text),
"lines": formatted_lines,
"style": request.style
},
"original_prompt": request.prompt,
"parameters": {
"max_length": request.max_length,
"temperature": request.temperature,
"top_k": request.top_k,
"top_p": request.top_p,
"repetition_penalty": request.repetition_penalty
},
"metadata": {
"device": config.DEVICE.type,
"model_type": "GPT2-Optimized",
"timestamp": datetime.now().isoformat()
}
}
async def generate(self, request: GenerateRequest) -> Dict[str, Any]:
"""Queue a request for generation and await result"""
try:
# Wait for model to be ready
await asyncio.wait_for(self.model_ready.wait(), timeout=60.0)
self.request_count += 1
# Add request to queue and get result
result = await self.request_queue.add_request(request)
return result
except asyncio.TimeoutError:
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail="Model is still initializing or overloaded"
)
except Exception as e:
logger.error(f"Error generating text: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e)
)
async def cleanup(self):
"""Perform memory cleanup operations"""
if config.DEVICE.type == 'cuda':
torch.cuda.empty_cache()
self.last_cleanup = datetime.now()
logger.info("Memory cleanup performed")
async def shutdown(self):
"""Clean shutdown of the model manager"""
# Cancel batch processor worker
if self.batch_processor_task:
self.batch_processor_task.cancel()
try:
await self.batch_processor_task
except asyncio.CancelledError:
pass
# Clear model from memory
if self.model is not None:
self.model = None
# Clear tokenizer from memory
if self.tokenization_service.tokenizer is not None:
self.tokenization_service.tokenizer = None
# Final memory cleanup
if config.DEVICE.type == 'cuda':
torch.cuda.empty_cache()
# Create model manager instance
model_manager = ModelManager()
# FastAPI lifespan
@asynccontextmanager
async def lifespan(app: FastAPI):
# Initialize on startup
initialized = await model_manager.initialize()
if not initialized:
logger.error("Failed to initialize model manager")
yield
# Clean up on shutdown
logger.info("Shutting down Poetry Generation API")
await model_manager.shutdown()
# Create FastAPI app
app = FastAPI(
title="Poetry Generation API",
description="High-Performance API for generating poetry using GPT-2",
version="3.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Health check endpoint
@app.api_route("/health", methods=["GET", "HEAD"])
async def health_check():
return {
"status": "healthy",
"model_loaded": model_manager.model is not None,
"model_ready": model_manager.model_ready.is_set(),
"tokenizer_loaded": model_manager.tokenization_service.tokenizer is not None,
"device": config.DEVICE.type,
"request_count": model_manager.request_count,
"queue_size": model_manager.request_queue.queue.qsize(),
"last_cleanup": model_manager.last_cleanup.isoformat(),
"system_info": {
"cuda_available": torch.cuda.is_available(),
"cuda_device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
"cuda_memory": {
"allocated": f"{torch.cuda.memory_allocated() / (1024**2):.2f} MB",
"reserved": f"{torch.cuda.memory_reserved() / (1024**2):.2f} MB",
"max_allocated": f"{torch.cuda.max_memory_allocated() / (1024**2):.2f} MB"
} if torch.cuda.is_available() else {},
}
}
# Poetry generation endpoint
@app.post("/generate")
async def generate_text(
request: GenerateRequest,
background_tasks: BackgroundTasks
):
try:
result = await model_manager.generate(request)
# Schedule cleanup every 50 requests
if model_manager.request_count % 50 == 0:
background_tasks.add_task(model_manager.cleanup)
return JSONResponse(
content=result,
status_code=status.HTTP_200_OK
)
except HTTPException as e:
# Re-raise HTTP exceptions
raise
except Exception as e:
logger.error(f"Error in generate_text: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e)
)
# Add profiling endpoint if profiling is enabled
if config.ENABLE_PROFILING:
@app.get("/profiling")
async def get_profiling():
if config.DEVICE.type == 'cuda':
return {
"memory": {
"allocated": f"{torch.cuda.memory_allocated() / (1024**2):.2f} MB",
"reserved": f"{torch.cuda.memory_reserved() / (1024**2):.2f} MB",
"max_allocated": f"{torch.cuda.max_memory_allocated() / (1024**2):.2f} MB"
},
"request_count": model_manager.request_count,
"queue_size": model_manager.request_queue.queue.qsize(),
}
else:
return {"device": "cpu", "profiling": "not available"} |