File size: 9,107 Bytes
5fbf3c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import sys
import joblib
import argparse
import collections

import mlflow
import numpy as np

import lightgbm as lgbm

from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.experimental import enable_iterative_imputer
from sklearn.metrics import accuracy_score, f1_score, make_scorer
from sklearn.impute import KNNImputer, SimpleImputer, IterativeImputer
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.model_selection import cross_validate, train_test_split, GridSearchCV, KFold

from data_utils import read_csv_file, get_data_from_data_frame


def load_ml_model(pkl_file_name):
    model_pipeline = mlflow.sklearn.load_model(pkl_file_name)
    return model_pipeline

def get_imputer(imputer_type):
    # setup parameter search space for different imputers
    imputer, imputer_params = None, None
    if imputer_type == "simple":
        imputer = SimpleImputer()
        imputer_params = {
            "imputer__strategy": ["mean", "median", "most_frequent"],
        }
    elif imputer_type == "knn":
        imputer = KNNImputer()
        imputer_params = {
            "imputer__n_neighbors": [5, 7],
            "imputer__weights": ["uniform", "distance"],
        }
    elif imputer_type == "iterative":
        imputer = IterativeImputer()
        imputer_params = {
            "imputer__initial_strategy": ["mean", "median", "most_frequent"],
            "imputer__imputation_order": ["ascending", "descending"],
        }
    else:
        print(f"unidentified option for arg, imputer_type: {imputer_type}")
        sys.exit(0)
    return imputer, imputer_params

def get_scaler():
    scaler = StandardScaler()
    return scaler

def get_pca(max_num_feats):
    pca = PCA()
    pca_params = {
        "pca__n_components": np.arange(2, max_num_feats+1),
    }
    return pca, pca_params

def get_classifier(classifier_type):
    # setup parameter search space for different classifiers

    classifier, classifier_params = None, None
    if classifier_type == "ada_boost":
        classifier = AdaBoostClassifier()
        classifier_params = {
            "classifier__learning_rate": [0.5, 1, 1.5, 2, 2.5, 3],
            "classifier__n_estimators": [100, 200, 500],
        }
    elif classifier_type == "log_reg":
        classifier = LogisticRegression(max_iter=200, solver="saga")
        classifier_params = {
            "classifier__penalty": ["l1", "l2", "elasticnet"],
            "classifier__class_weight": [None, "balanced"],
            "classifier__C": [0.1, 0.5, 1, 2],
            "classifier__l1_ratio": np.arange(0.1, 1, 0.1),
        }
    elif classifier_type == "random_forest":
        classifier = RandomForestClassifier()
        classifier_params = {
            "classifier__n_estimators": [100, 250],
            "classifier__criterion": ["gini", "entropy"],
            "classifier__max_depth": [None, 10, 25, 50, 75],
            "classifier__min_samples_leaf": [1, 5, 10, 20],
            "classifier__min_samples_split": [2, 3, 4, 5],
        }
    elif classifier_type == "svc":
        classifier = SVC()
        classifier_params = {
            "classifier__C": [0.5, 1, 1.5, 2, 2.5],
            "classifier__kernel": ["linear", "poly", "rbf", "sigmoid"],
            "classifier__degree": [2, 3, 4],
        }
    elif classifier_type == "light_gbm":
        classifier = lgbm.LGBMClassifier(
            boosting_type="gbdt", objective="binary", metric="auc", verbosity=-1)
        classifier_params = {
            "classifier__num_leaves": [15, 31, 63, 127, 255],
            "classifier__learning_rate": [0.1, 0.5, 1, 2],
            "classifier__n_estimators": [100, 500, 1000],
            "classifier__reg_lambda": [0.1, 0.5, 1],
            "classifier__min_data_in_leaf": [10, 20, 30, 50],
        }
    else:
        print(f"unidentified option for arg, classifier_type: {classifier_type}")
        sys.exit(0)

    return classifier, classifier_params

def get_pipeline_params(imputer_params, classifier_params):
    pipeline_params = {**imputer_params, **classifier_params}
    return pipeline_params

def train_model(df_train, df_test, imputer_type, classifier_type):
    # get data arrays from the data frame for train and test sets
    X_train, Y_train = get_data_from_data_frame(df_train)
    X_test, Y_test = get_data_from_data_frame(df_test)

    # get imputer and its params
    imputer, imputer_params = get_imputer(imputer_type)

    # get classifier and its params
    classifier, classifier_params = get_classifier(classifier_type)

    # get the pipeline params
    pipeline_params = get_pipeline_params(imputer_params, classifier_params)

    print("\n" + "-"*100)
    # build the model pipeline
    if classifier_type == "svc" or classifier_type == "log_reg":
        scaler = get_scaler()
        pca, pca_params = get_pca(X_train.shape[1])
        print(f"Started training the model with the imputer: {imputer_type}, preprocessing: std_scaler + pca, classifier: {classifier_type}")

        pipeline = Pipeline([("imputer", imputer), ("scaler", scaler), ("pca", pca), ("classifier", classifier)])
        pipeline_params = get_pipeline_params(pipeline_params, pca_params)
    else:
        print(f"Started training the model with the imputer: {imputer_type}, classifier: {classifier_type}")
        pipeline = Pipeline([("imputer", imputer), ("classifier", classifier)])
    print("Model pipeline params space: ")
    print(pipeline_params)
    print("-"*100)

    # setup grid search with k-fold cross validation
    k_fold_cv = KFold(n_splits=5, shuffle=True, random_state=4)
    grid_cv = GridSearchCV(pipeline, pipeline_params, scoring="f1", cv=k_fold_cv)
    grid_cv.fit(X_train, Y_train)

    # get the cross validation score and the params for the best estimator
    cv_best_estimator = grid_cv.best_estimator_
    cv_best_f1 = grid_cv.best_score_
    cv_best_params = grid_cv.best_params_

    # predict and compute train set metrics
    Y_train_pred = cv_best_estimator.predict(X_train)
    train_f1 = f1_score(Y_train, Y_train_pred)
    train_acc = accuracy_score(Y_train, Y_train_pred)

    # predict and compute test set metrics
    Y_test_pred = cv_best_estimator.predict(X_test)
    test_f1 = f1_score(Y_test, Y_test_pred)
    test_acc = accuracy_score(Y_test, Y_test_pred)

    print("\n" + "-"*50)
    # begin mlflow logging for the best estimator
    mlflow.set_experiment("water_potability")
    experiment = mlflow.get_experiment_by_name("water_potability")
    print(f"Started mlflow logging for the best estimator")
    with mlflow.start_run(experiment_id=experiment.experiment_id):
        # log the model and the metrics
        mlflow.sklearn.log_model(cv_best_estimator, f"{imputer_type}_{classifier_type}")
        mlflow.sklearn.save_model(cv_best_estimator, f"{imputer_type}_{classifier_type}")
        mlflow.log_params(cv_best_params)
        mlflow.log_metric("cv_f1_score", cv_best_f1)
        mlflow.log_metric("train_f1_score", train_f1)
        mlflow.log_metric("train_acc_score", train_acc)
        mlflow.log_metric("test_f1_score", test_f1)
        mlflow.log_metric("test_acc_score", test_acc)
    # end mlflow logging
    mlflow.end_run()
    print(f"Completed mlflow logging for the best estimator")
    print("-"*50)
    return

def init_and_train_model(ARGS):
    df_csv = read_csv_file(ARGS.file_csv)
    df_train, df_test = train_test_split(df_csv, test_size=0.1, random_state=4)

    num_samples_train = df_train.shape[0]
    num_samples_test = df_test.shape[0]

    print("\n" + "-"*40)
    print("Num samples after splitting the dataset")
    print("-"*40)
    print(f"train: {num_samples_train}, test: {num_samples_test}")

    print("\n" + "-"*40)
    print("A few samples from train data")
    print("-"*40)
    print(df_train.head())

    if ARGS.is_train:
        train_model(df_train, df_test, ARGS.imputer_type, ARGS.classifier_type)
    return

def main():
    file_csv = "dataset/water_potability.csv"
    classifier_type = "ada_boost"
    imputer_type = "knn"
    is_train = 1

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument("--file_csv", default=file_csv,
        type=str, help="full path to dataset csv file")
    parser.add_argument("--is_train", default=is_train,
        type=int, choices=[0, 1], help="to train or not")
    parser.add_argument("--classifier_type", default=classifier_type,
        type=str, choices=["ada_boost", "log_reg", "random_forest", "svc", "light_gbm"],
        help="classifier to be used in the training model pipeline")
    parser.add_argument("--imputer_type", default=imputer_type,
        type=str, choices=["simple", "knn", "iterative"],
        help="imputer to be used in the training model pipeline")

    ARGS, unparsed = parser.parse_known_args()
    init_and_train_model(ARGS)
    return

if __name__ == "__main__":
    main()