Spaces:
Sleeping
Sleeping
File size: 9,107 Bytes
5fbf3c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import sys
import joblib
import argparse
import collections
import mlflow
import numpy as np
import lightgbm as lgbm
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.experimental import enable_iterative_imputer
from sklearn.metrics import accuracy_score, f1_score, make_scorer
from sklearn.impute import KNNImputer, SimpleImputer, IterativeImputer
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.model_selection import cross_validate, train_test_split, GridSearchCV, KFold
from data_utils import read_csv_file, get_data_from_data_frame
def load_ml_model(pkl_file_name):
model_pipeline = mlflow.sklearn.load_model(pkl_file_name)
return model_pipeline
def get_imputer(imputer_type):
# setup parameter search space for different imputers
imputer, imputer_params = None, None
if imputer_type == "simple":
imputer = SimpleImputer()
imputer_params = {
"imputer__strategy": ["mean", "median", "most_frequent"],
}
elif imputer_type == "knn":
imputer = KNNImputer()
imputer_params = {
"imputer__n_neighbors": [5, 7],
"imputer__weights": ["uniform", "distance"],
}
elif imputer_type == "iterative":
imputer = IterativeImputer()
imputer_params = {
"imputer__initial_strategy": ["mean", "median", "most_frequent"],
"imputer__imputation_order": ["ascending", "descending"],
}
else:
print(f"unidentified option for arg, imputer_type: {imputer_type}")
sys.exit(0)
return imputer, imputer_params
def get_scaler():
scaler = StandardScaler()
return scaler
def get_pca(max_num_feats):
pca = PCA()
pca_params = {
"pca__n_components": np.arange(2, max_num_feats+1),
}
return pca, pca_params
def get_classifier(classifier_type):
# setup parameter search space for different classifiers
classifier, classifier_params = None, None
if classifier_type == "ada_boost":
classifier = AdaBoostClassifier()
classifier_params = {
"classifier__learning_rate": [0.5, 1, 1.5, 2, 2.5, 3],
"classifier__n_estimators": [100, 200, 500],
}
elif classifier_type == "log_reg":
classifier = LogisticRegression(max_iter=200, solver="saga")
classifier_params = {
"classifier__penalty": ["l1", "l2", "elasticnet"],
"classifier__class_weight": [None, "balanced"],
"classifier__C": [0.1, 0.5, 1, 2],
"classifier__l1_ratio": np.arange(0.1, 1, 0.1),
}
elif classifier_type == "random_forest":
classifier = RandomForestClassifier()
classifier_params = {
"classifier__n_estimators": [100, 250],
"classifier__criterion": ["gini", "entropy"],
"classifier__max_depth": [None, 10, 25, 50, 75],
"classifier__min_samples_leaf": [1, 5, 10, 20],
"classifier__min_samples_split": [2, 3, 4, 5],
}
elif classifier_type == "svc":
classifier = SVC()
classifier_params = {
"classifier__C": [0.5, 1, 1.5, 2, 2.5],
"classifier__kernel": ["linear", "poly", "rbf", "sigmoid"],
"classifier__degree": [2, 3, 4],
}
elif classifier_type == "light_gbm":
classifier = lgbm.LGBMClassifier(
boosting_type="gbdt", objective="binary", metric="auc", verbosity=-1)
classifier_params = {
"classifier__num_leaves": [15, 31, 63, 127, 255],
"classifier__learning_rate": [0.1, 0.5, 1, 2],
"classifier__n_estimators": [100, 500, 1000],
"classifier__reg_lambda": [0.1, 0.5, 1],
"classifier__min_data_in_leaf": [10, 20, 30, 50],
}
else:
print(f"unidentified option for arg, classifier_type: {classifier_type}")
sys.exit(0)
return classifier, classifier_params
def get_pipeline_params(imputer_params, classifier_params):
pipeline_params = {**imputer_params, **classifier_params}
return pipeline_params
def train_model(df_train, df_test, imputer_type, classifier_type):
# get data arrays from the data frame for train and test sets
X_train, Y_train = get_data_from_data_frame(df_train)
X_test, Y_test = get_data_from_data_frame(df_test)
# get imputer and its params
imputer, imputer_params = get_imputer(imputer_type)
# get classifier and its params
classifier, classifier_params = get_classifier(classifier_type)
# get the pipeline params
pipeline_params = get_pipeline_params(imputer_params, classifier_params)
print("\n" + "-"*100)
# build the model pipeline
if classifier_type == "svc" or classifier_type == "log_reg":
scaler = get_scaler()
pca, pca_params = get_pca(X_train.shape[1])
print(f"Started training the model with the imputer: {imputer_type}, preprocessing: std_scaler + pca, classifier: {classifier_type}")
pipeline = Pipeline([("imputer", imputer), ("scaler", scaler), ("pca", pca), ("classifier", classifier)])
pipeline_params = get_pipeline_params(pipeline_params, pca_params)
else:
print(f"Started training the model with the imputer: {imputer_type}, classifier: {classifier_type}")
pipeline = Pipeline([("imputer", imputer), ("classifier", classifier)])
print("Model pipeline params space: ")
print(pipeline_params)
print("-"*100)
# setup grid search with k-fold cross validation
k_fold_cv = KFold(n_splits=5, shuffle=True, random_state=4)
grid_cv = GridSearchCV(pipeline, pipeline_params, scoring="f1", cv=k_fold_cv)
grid_cv.fit(X_train, Y_train)
# get the cross validation score and the params for the best estimator
cv_best_estimator = grid_cv.best_estimator_
cv_best_f1 = grid_cv.best_score_
cv_best_params = grid_cv.best_params_
# predict and compute train set metrics
Y_train_pred = cv_best_estimator.predict(X_train)
train_f1 = f1_score(Y_train, Y_train_pred)
train_acc = accuracy_score(Y_train, Y_train_pred)
# predict and compute test set metrics
Y_test_pred = cv_best_estimator.predict(X_test)
test_f1 = f1_score(Y_test, Y_test_pred)
test_acc = accuracy_score(Y_test, Y_test_pred)
print("\n" + "-"*50)
# begin mlflow logging for the best estimator
mlflow.set_experiment("water_potability")
experiment = mlflow.get_experiment_by_name("water_potability")
print(f"Started mlflow logging for the best estimator")
with mlflow.start_run(experiment_id=experiment.experiment_id):
# log the model and the metrics
mlflow.sklearn.log_model(cv_best_estimator, f"{imputer_type}_{classifier_type}")
mlflow.sklearn.save_model(cv_best_estimator, f"{imputer_type}_{classifier_type}")
mlflow.log_params(cv_best_params)
mlflow.log_metric("cv_f1_score", cv_best_f1)
mlflow.log_metric("train_f1_score", train_f1)
mlflow.log_metric("train_acc_score", train_acc)
mlflow.log_metric("test_f1_score", test_f1)
mlflow.log_metric("test_acc_score", test_acc)
# end mlflow logging
mlflow.end_run()
print(f"Completed mlflow logging for the best estimator")
print("-"*50)
return
def init_and_train_model(ARGS):
df_csv = read_csv_file(ARGS.file_csv)
df_train, df_test = train_test_split(df_csv, test_size=0.1, random_state=4)
num_samples_train = df_train.shape[0]
num_samples_test = df_test.shape[0]
print("\n" + "-"*40)
print("Num samples after splitting the dataset")
print("-"*40)
print(f"train: {num_samples_train}, test: {num_samples_test}")
print("\n" + "-"*40)
print("A few samples from train data")
print("-"*40)
print(df_train.head())
if ARGS.is_train:
train_model(df_train, df_test, ARGS.imputer_type, ARGS.classifier_type)
return
def main():
file_csv = "dataset/water_potability.csv"
classifier_type = "ada_boost"
imputer_type = "knn"
is_train = 1
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--file_csv", default=file_csv,
type=str, help="full path to dataset csv file")
parser.add_argument("--is_train", default=is_train,
type=int, choices=[0, 1], help="to train or not")
parser.add_argument("--classifier_type", default=classifier_type,
type=str, choices=["ada_boost", "log_reg", "random_forest", "svc", "light_gbm"],
help="classifier to be used in the training model pipeline")
parser.add_argument("--imputer_type", default=imputer_type,
type=str, choices=["simple", "knn", "iterative"],
help="imputer to be used in the training model pipeline")
ARGS, unparsed = parser.parse_known_args()
init_and_train_model(ARGS)
return
if __name__ == "__main__":
main()
|