File size: 7,070 Bytes
bd421ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import sys
import time
import torch
import argparse
import torchvision
import numpy as np
import torch.nn as nn
from PIL import Image
from skimage.io import imread
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.transforms as transforms

from dataset import HWRecogIAMDataset
from model_main import CRNN, STN_CRNN
from utils import ctc_decode, compute_wer_and_cer_for_sample


class DatasetFinalEval(HWRecogIAMDataset):
    """
    Dataset class for final evaluation - inherits main dataset class
    """
    def __init__(self, dir_images, image_height=32, image_width=768):
        """
        ---------
        Arguments
        ---------
        dir_images : str
            full path to directory containing images
        image_height : int
            image height (default: 32)
        image_width : int
            image width (default: 768)
        """
        self.dir_images = dir_images
        self.image_files = [f for f in os.listdir(self.dir_images) if f.endswith(".png")]
        self.image_width = image_width
        self.image_height = image_height
        self.transform = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize((self.image_height, self.image_width), Image.BILINEAR),
            transforms.ToTensor(),
            transforms.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
            ),
        ])

    def __len__(self):
        return len(self.image_files)

    def __getitem__(self, idx):
        image_file_name = self.image_files[idx]
        image_gray = imread(os.path.join(self.dir_images, image_file_name))
        image_3_channel = np.repeat(np.expand_dims(image_gray, -1), 3, -1)
        image_3_channel = self.transform(image_3_channel)
        return image_3_channel

def get_dataloader_for_evaluation(dir_images, image_height=32, image_width=768, batch_size=1):
    """
    ---------
    Arguments
    ---------
    dir_images : str
        full path to directory containing images
    image_height : int
        image height (default: 32)
    image_width : int
        image width (default: 768)
    batch_size : int
        batch size to use for final evaluation (default: 1)

    -------
    Returns
    -------
    test_loader : object
        dataset loader object for final evaluation
    """
    test_dataset = DatasetFinalEval(dir_images=dir_images, image_height=image_height, image_width=image_width)
    test_loader = DataLoader(
        test_dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=4,
    )
    return test_loader

def final_eval(hw_model, device, test_loader, dir_images, dir_results):
    """
    ---------
    Arguments
    ---------
    hw_model : object
        handwriting recognition model object
    device : str
        device to be used for running the evaluation
    test_loader : object
        dataset loader object
    dir_images : str
        full path to directory containing test images
    dir_results : str
        relative path to directory to save the predictions as txt files
    """
    hw_model.eval()
    count = 0
    num_test_samples = len(test_loader.dataset)
    list_test_files = os.listdir(dir_images)

    if not os.path.isdir(dir_results):
        print(f"creating directory: {dir_results}")
        os.makedirs(dir_results)

    with torch.no_grad():
        for image_test in test_loader:
            file_test = list_test_files[count]
            count += 1
            """
            if count == 11:
                break
            """
            image_test = image_test.to(device, dtype=torch.float)

            log_probs = hw_model(image_test)
            pred_labels = ctc_decode(log_probs)
            str_pred = [DatasetFinalEval.LABEL_2_CHAR[i] for i in pred_labels[0]]
            str_pred = "".join(str_pred)

            with open(os.path.join(dir_results, file_test+".txt"), "w", encoding="utf-8", newline="\n") as fh_pred:
                fh_pred.write(str_pred)

            print(f"progress: {count}/{num_test_samples}, test file: {list_test_files[count-1]}")
            print(f"{str_pred}\n")
    print(f"predictions saved in directory: ./{dir_results}\n")
    return

def test_hw_recognizer(FLAGS):
    os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"

    num_classes = len(DatasetFinalEval.LABEL_2_CHAR) + 1
    print(f"task - handwriting recognition")
    print(f"model: {FLAGS.which_hw_model}")
    print(f"image height: {FLAGS.image_height}, image width: {FLAGS.image_width}")

    # load the right model
    if FLAGS.which_hw_model == "crnn":
        hw_model = CRNN(num_classes, FLAGS.image_height)
    elif FLAGS.which_hw_model == "stn_crnn":
        hw_model = STN_CRNN(num_classes, FLAGS.image_height, FLAGS.image_width)
    else:
        print(f"unidentified option : {FLAGS.which_hw_model}")
        sys.exit(0)
    dir_results = f"results_{FLAGS.which_hw_model}"

    # choose a device for evaluation
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    hw_model.to(device)
    hw_model.load_state_dict(torch.load(FLAGS.file_model))

    # get test set dataloader
    test_loader = get_dataloader_for_evaluation(
        dir_images=FLAGS.dir_images, image_height=FLAGS.image_height, image_width=FLAGS.image_width,
    )

    # start the evaluation on the final test set
    print(f"final evaluation of handwriting recognition model {FLAGS.which_hw_model} started\n")
    final_eval(hw_model, device, test_loader, FLAGS.dir_images, dir_results)
    print(f"final evaluation of handwriting recognition model completed!!!!")
    return

def main():
    image_height = 32
    image_width = 768
    which_hw_model = "crnn"
    dir_images = "/home/abhishek/Desktop/RUG/hw_recognition/IAM-data/img/"
    file_model = "model_crnn/crnn_H_32_W_768_E_177.pth"
    save_predictions = 1

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument("--image_height", default=image_height,
        type=int, help="image height to be used to predict with the model")
    parser.add_argument("--image_width", default=image_width,
        type=int, help="image width to be used to predict with the model")
    parser.add_argument("--dir_images", default=dir_images,
        type=str, help="full directory path to directory containing images")
    parser.add_argument("--which_hw_model", default=which_hw_model,
        type=str, choices=["crnn", "stn_crnn"], help="which model to be used for prediction")
    parser.add_argument("--file_model", default=file_model,
        type=str, help="full path to trained model file (.pth)")
    parser.add_argument("--save_predictions", default=save_predictions,
        type=int, choices=[0, 1], help="save or do not save the predictions (1 - save, 0 - do not save)")

    FLAGS, unparsed = parser.parse_known_args()
    test_hw_recognizer(FLAGS)
    return

if __name__ == "__main__":
    main()