Spaces:
Sleeping
Sleeping
File size: 6,292 Bytes
bd421ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import sys
import time
import torch
import argparse
import torchvision
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from logger_utils import CSVWriter
from model_main import CRNN, STN_CRNN
from utils import ctc_decode, compute_wer_and_cer_for_sample
from dataset import HWRecogIAMDataset, split_dataset, get_dataloader_for_testing
def test(hw_model, test_loader, device, list_test_files, which_ctc_decoder="beam_search", save_prediction_stats=False):
"""
---------
Arguments
---------
hw_model : object
handwriting recognition model object
test_loader : object
dataset loader object
device : str
device to be used for running the evaluation
list_test_files : list
list of all the test files
which_ctc_decoder : str
string indicating which ctc decoder to use
save_prediction_stats : bool
whether to save prediction stats
"""
hw_model.eval()
num_test_samples = len(test_loader.dataset)
num_test_batches = len(test_loader)
count = 0
list_test_cers, list_test_wers = [], []
if save_prediction_stats:
csv_writer = CSVWriter(
file_name="pred_stats.csv",
column_names=["file_name", "num_chars", "num_words", "cer", "wer"]
)
with torch.no_grad():
for images, labels, length_labels in test_loader:
count += 1
images = images.to(device, dtype=torch.float)
log_probs = hw_model(images)
pred_labels = ctc_decode(log_probs, which_ctc_decoder=which_ctc_decoder)
labels = labels.cpu().numpy().tolist()
str_label = [HWRecogIAMDataset.LABEL_2_CHAR[i] for i in labels]
str_label = "".join(str_label)
str_pred = [HWRecogIAMDataset.LABEL_2_CHAR[i] for i in pred_labels[0]]
str_pred = "".join(str_pred)
cer_sample, wer_sample = compute_wer_and_cer_for_sample(str_pred, str_label)
list_test_cers.append(cer_sample)
list_test_wers.append(wer_sample)
print(f"progress: {count}/{num_test_samples}, test file: {list_test_files[count-1]}")
print(f"{str_label} - label")
print(f"{str_pred} - prediction")
print(f"cer: {cer_sample:.3f}, wer: {wer_sample:.3f}\n")
if save_prediction_stats:
csv_writer.write_row([
list_test_files[count-1],
len(str_label),
len(str_label.split(" ")),
cer_sample,
wer_sample,
])
list_test_cers = np.array(list_test_cers)
list_test_wers = np.array(list_test_wers)
mean_test_cer = np.mean(list_test_cers)
mean_test_wer = np.mean(list_test_wers)
print(f"test set - mean cer: {mean_test_cer:.3f}, mean wer: {mean_test_wer:.3f}\n")
if save_prediction_stats:
csv_writer.close()
return
def test_hw_recognizer(FLAGS):
file_txt_labels = os.path.join(FLAGS.dir_dataset, "iam_lines_gt.txt")
dir_images = os.path.join(FLAGS.dir_dataset, "img")
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
# choose a device for testing
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
# get the internal test set files
test_x, test_y = split_dataset(file_txt_labels, for_train=False)
num_test_samples = len(test_x)
# get the internal test set dataloader
test_loader = get_dataloader_for_testing(
test_x, test_y,
dir_images=dir_images, image_height=FLAGS.image_height, image_width=FLAGS.image_width,
)
num_classes = len(HWRecogIAMDataset.LABEL_2_CHAR) + 1
print(f"task - handwriting recognition")
print(f"model: {FLAGS.which_hw_model}, ctc decoder: {FLAGS.which_ctc_decoder}")
print(f"image height: {FLAGS.image_height}, image width: {FLAGS.image_width}")
print(f"num test samples: {num_test_samples}")
# load the right model
if FLAGS.which_hw_model == "crnn":
hw_model = CRNN(num_classes, FLAGS.image_height)
elif FLAGS.which_hw_model == "stn_crnn":
hw_model = STN_CRNN(num_classes, FLAGS.image_height, FLAGS.image_width)
else:
print(f"unidentified option : {FLAGS.which_hw_model}")
sys.exit(0)
hw_model.to(device)
hw_model.load_state_dict(torch.load(FLAGS.file_model))
# start testing of the model on the internal set
print(f"testing of handwriting recognition model {FLAGS.which_hw_model} started\n")
test(hw_model, test_loader, device, test_x, FLAGS.which_ctc_decoder, bool(FLAGS.save_prediction_stats))
print(f"testing handwriting recognition model completed!!!!")
return
def main():
image_height = 32
image_width = 768
which_hw_model = "crnn"
dir_dataset = "/home/abhishek/Desktop/RUG/hw_recognition/IAM-data/"
file_model = "model_crnn/crnn_H_32_W_768_E_177.pth"
which_ctc_decoder = "beam_search"
save_prediction_stats = 0
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--image_height", default=image_height,
type=int, help="image height to be used to predict with the model")
parser.add_argument("--image_width", default=image_width,
type=int, help="image width to be used to predict with the model")
parser.add_argument("--dir_dataset", default=dir_dataset,
type=str, help="full directory path to the dataset")
parser.add_argument("--which_hw_model", default=which_hw_model,
type=str, choices=["crnn", "stn_crnn"], help="which model to be used for prediction")
parser.add_argument("--which_ctc_decoder", default=which_ctc_decoder,
type=str, choices=["beam_search", "greedy"], help="which ctc decoder to use")
parser.add_argument("--file_model", default=file_model,
type=str, help="full path to trained model file (.pth)")
parser.add_argument("--save_prediction_stats", default=save_prediction_stats,
type=int, choices=[0, 1], help="save prediction stats (1 - yes, 0 - no)")
FLAGS, unparsed = parser.parse_known_args()
test_hw_recognizer(FLAGS)
return
if __name__ == "__main__":
main()
|