Spaces:
Sleeping
Sleeping
File size: 17,833 Bytes
bd421ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import torch
import numpy as np
import torch.nn as nn
from typing import List
from torch import Tensor
import torch.nn.functional as F
from torchvision.models.resnet import BasicBlock, model_urls, load_state_dict_from_url, conv1x1, conv3x3
device = torch.device("cuda")
class CustomResNet(nn.Module):
def __init__(
self,
layers: List[int],
block=BasicBlock,
zero_init_residual=False,
groups=1,
num_classes=1000,
width_per_group=64,
replace_stride_with_dilation=None,
norm_layer=None,
):
super().__init__()
if norm_layer is None:
self._norm_layer = nn.BatchNorm2d
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = self._norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=(2, 1), padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=(2, 1), dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=(2, 2), dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=(2, 1), dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
def _make_layer(
self,
block,
planes,
blocks,
stride=1,
dilate=False,
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _resnet(layers: List[int], pretrained=True) -> CustomResNet:
model = CustomResNet(layers)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls["resnet34"]))
return model
def resnet34(*, pretrained=True) -> CustomResNet:
"""ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
Args:
weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.ResNet34_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ResNet34_Weights
:members:
"""
return _resnet([3, 4, 6, 3], pretrained=pretrained)
class ResNetFeatureExtractor(nn.Module):
"""
Defines Base ResNet-34 feature extractor
"""
def __init__(self, pretrained=True):
"""
---------
Arguments
---------
pretrained : bool (default=True)
boolean to indicate whether to use a pretrained resnet model or not
"""
super().__init__()
self.output_channels = 512
self.resnet34 = resnet34(pretrained=pretrained)
def forward(self, x):
block1 = self.resnet34.conv1(x)
block1 = self.resnet34.bn1(block1)
block1 = self.resnet34.relu(block1) # [64, H/2, W/2]
block2 = self.resnet34.maxpool(block1)
block2 = self.resnet34.layer1(block2) # [64, H/4, W/4]
block3 = self.resnet34.layer2(block2) # [128, H/8, W/8]
block4 = self.resnet34.layer3(block3) # [256, H/16, W/16]
resnet_features = self.resnet34.layer4(block4) # [512, H/32, W/32]
# [B, 512, H/32, W/32]
return resnet_features
#########################################
### STN - Spatial Transformer Network ###
#########################################
class TPS_SpatialTransformerNetwork(nn.Module):
""" Rectification Network of RARE, namely TPS based STN """
def __init__(self, num_fiducial_points, I_size, I_r_size, I_channel_num=1):
""" Based on RARE TPS
input:
batch_I: Batch Input Image [batch_size x I_channel_num x I_height x I_width]
I_size : (height, width) of the input image I
I_r_size : (height, width) of the rectified image I_r
I_channel_num : the number of channels of the input image I
output:
batch_I_r: rectified image [batch_size x I_channel_num x I_r_height x I_r_width]
"""
super(TPS_SpatialTransformerNetwork, self).__init__()
self.num_fiducial_points = num_fiducial_points
self.I_size = I_size
self.I_r_size = I_r_size # = (I_r_height, I_r_width)
self.I_channel_num = I_channel_num
self.LocalizationNetwork = LocalizationNetwork(self.num_fiducial_points, self.I_channel_num)
self.GridGenerator = GridGenerator(self.num_fiducial_points, self.I_r_size)
def forward(self, batch_I):
batch_C_prime = self.LocalizationNetwork(batch_I) # batch_size x K x 2
build_P_prime = self.GridGenerator.build_P_prime(batch_C_prime) # batch_size x n (= I_r_width x I_r_height) x 2
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.size(0), self.I_r_size[0], self.I_r_size[1], 2])
if torch.__version__ > "1.2.0":
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border', align_corners=True)
else:
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border')
return batch_I_r
class LocalizationNetwork(nn.Module):
""" Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """
def __init__(self, num_fiducial_points, I_channel_num):
super(LocalizationNetwork, self).__init__()
self.num_fiducial_points = num_fiducial_points
self.I_channel_num = I_channel_num
self.conv = nn.Sequential(
nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1,
bias=False), nn.BatchNorm2d(64), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 64 x I_height/2 x I_width/2
nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 128 x I_height/4 x I_width/4
nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 256 x I_height/8 x I_width/8
nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True),
nn.AdaptiveAvgPool2d(1) # batch_size x 512
)
self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True))
self.localization_fc2 = nn.Linear(256, self.num_fiducial_points * 2)
# Init fc2 in LocalizationNetwork
self.localization_fc2.weight.data.fill_(0)
""" see RARE paper Fig. 6 (a) """
ctrl_pts_x = np.linspace(-1.0, 1.0, int(num_fiducial_points / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(num_fiducial_points / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(num_fiducial_points / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1)
def forward(self, batch_I):
"""
input: batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width]
output: batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2]
"""
batch_size = batch_I.size(0)
features = self.conv(batch_I).view(batch_size, -1)
batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.num_fiducial_points, 2)
return batch_C_prime
class GridGenerator(nn.Module):
""" Grid Generator of RARE, which produces P_prime by multipling T with P """
def __init__(self, num_fiducial_points, I_r_size):
""" Generate P_hat and inv_delta_C for later """
super(GridGenerator, self).__init__()
self.eps = 1e-6
self.I_r_height, self.I_r_width = I_r_size
self.num_fiducial_points = num_fiducial_points
self.C = self._build_C(self.num_fiducial_points) # F x 2
self.P = self._build_P(self.I_r_width, self.I_r_height)
## for multi-gpu, you need register buffer
self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.num_fiducial_points, self.C)).float()) # F+3 x F+3
self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.num_fiducial_points, self.C, self.P)).float()) # n x F+3
## for fine-tuning with different image width, you may use below instead of self.register_buffer
#self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.num_fiducial_points, self.C)).float().cuda() # F+3 x F+3
#self.P_hat = torch.tensor(self._build_P_hat(self.num_fiducial_points, self.C, self.P)).float().cuda() # n x F+3
def _build_C(self, F):
""" Return coordinates of fiducial points in I_r; C """
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = -1 * np.ones(int(F / 2))
ctrl_pts_y_bottom = np.ones(int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return C # F x 2
def _build_inv_delta_C(self, F, C):
""" Return inv_delta_C which is needed to calculate T """
hat_C = np.zeros((F, F), dtype=float) # F x F
for i in range(0, F):
for j in range(i, F):
r = np.linalg.norm(C[i] - C[j])
hat_C[i, j] = r
hat_C[j, i] = r
np.fill_diagonal(hat_C, 1)
hat_C = (hat_C ** 2) * np.log(hat_C)
# print(C.shape, hat_C.shape)
delta_C = np.concatenate( # F+3 x F+3
[
np.concatenate([np.ones((F, 1)), C, hat_C], axis=1), # F x F+3
np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1), # 2 x F+3
np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1) # 1 x F+3
],
axis=0
)
inv_delta_C = np.linalg.inv(delta_C)
return inv_delta_C # F+3 x F+3
def _build_P(self, I_r_width, I_r_height):
I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width # self.I_r_width
I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height # self.I_r_height
P = np.stack( # self.I_r_width x self.I_r_height x 2
np.meshgrid(I_r_grid_x, I_r_grid_y),
axis=2
)
return P.reshape([-1, 2]) # n (= self.I_r_width x self.I_r_height) x 2
def _build_P_hat(self, F, C, P):
n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1)) # n x 2 -> n x 1 x 2 -> n x F x 2
C_tile = np.expand_dims(C, axis=0) # 1 x F x 2
P_diff = P_tile - C_tile # n x F x 2
rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False) # n x F
rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps)) # n x F
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
return P_hat # n x F+3
def build_P_prime(self, batch_C_prime):
""" Generate Grid from batch_C_prime [batch_size x F x 2] """
batch_size = batch_C_prime.size(0)
batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros(
batch_size, 3, 2).float().to(device)), dim=1) # batch_size x F+3 x 2
batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x F+3 x 2
batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2
return batch_P_prime # batch_size x n x 2
"""
########################################
######## Pyramid Pooling Block #########
########################################
class PyramidPool(nn.Module):
def __init__(self, pool_kernel_size, in_channels, out_channels):
super().__init__()
self.pool_kernel_size = pool_kernel_size
self.avg_pool_block = nn.Sequential(
nn.AvgPool2d((1, self.pool_kernel_size), stride=(1, self.pool_kernel_size)),
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding="same", bias=False),
nn.BatchNorm2d(out_channels),
nn.ELU(inplace=True),
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
_, _, in_height, in_width = x.size()
x = self.avg_pool_block(x)
x = F.interpolate(x, size=(in_height, in_width), mode="bilinear")
return x
class PyramidPoolBlock(nn.Module):
def __init__(self, pyramid_pool_kernel_sizes=[4, 8, 16, 32], num_channels=512):
super().__init__()
pp_out_channels = 256
self.pyramid_pool_layers = nn.ModuleList([PyramidPool(pool_kernel_size=k, in_channels=num_channels, out_channels=pp_out_channels) for k in pyramid_pool_kernel_sizes])
self.final_layer = nn.Sequential(
nn.Conv2d((num_channels + (pp_out_channels * len(self.pyramid_pool_layers))), num_channels, (1, 5), stride=1, padding="same"),
nn.BatchNorm2d(num_channels),
nn.ELU(inplace=True),
nn.Dropout(p=0.1),
)
def forward(self, input):
pp_outputs = []
for pp_layer in self.pyramid_pool_layers:
pp_output = pp_layer(input)
pp_outputs.append(pp_output)
pp_outputs.append(input)
x = torch.cat(pp_outputs, dim=1)
x = self.final_layer(x)
return x
"""
|