File size: 17,833 Bytes
bd421ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import torch
import numpy as np
import torch.nn as nn
from typing import List
from torch import Tensor
import torch.nn.functional as F
from torchvision.models.resnet import BasicBlock, model_urls, load_state_dict_from_url, conv1x1, conv3x3

device = torch.device("cuda")

class CustomResNet(nn.Module):
    def __init__(

        self,

        layers: List[int],

        block=BasicBlock,

        zero_init_residual=False,

        groups=1,

        num_classes=1000,

        width_per_group=64,

        replace_stride_with_dilation=None,

        norm_layer=None,

    ):

        super().__init__()

        if norm_layer is None:
            self._norm_layer = nn.BatchNorm2d

        self.inplanes = 64
        self.dilation = 1

        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]

        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
            )

        self.groups = groups
        self.base_width = width_per_group

        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = self._norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=(2, 1), padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=(2, 1), dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=(2, 2), dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=(2, 1), dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]

    def _make_layer(

        self,

        block,

        planes,

        blocks,

        stride=1,

        dilate=False,

    ) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )

        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)

def _resnet(layers: List[int], pretrained=True) -> CustomResNet:
    model = CustomResNet(layers)

    if pretrained:
        model.load_state_dict(load_state_dict_from_url(model_urls["resnet34"]))

    return model

def resnet34(*, pretrained=True) -> CustomResNet:
    """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.

    Args:

        weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The

            pretrained weights to use. See

            :class:`~torchvision.models.ResNet34_Weights` below for

            more details, and possible values. By default, no pre-trained

            weights are used.

        progress (bool, optional): If True, displays a progress bar of the

            download to stderr. Default is True.

        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``

            base class. Please refer to the `source code

            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_

            for more details about this class.

    .. autoclass:: torchvision.models.ResNet34_Weights

        :members:

    """

    return _resnet([3, 4, 6, 3], pretrained=pretrained)


class ResNetFeatureExtractor(nn.Module):
    """

    Defines Base ResNet-34 feature extractor

    """
    def __init__(self, pretrained=True):
        """

        ---------

        Arguments

        ---------

        pretrained : bool (default=True)

            boolean to indicate whether to use a pretrained resnet model or not

        """
        super().__init__()
        self.output_channels = 512
        self.resnet34 = resnet34(pretrained=pretrained)

    def forward(self, x):
        block1 = self.resnet34.conv1(x)
        block1 = self.resnet34.bn1(block1)
        block1 = self.resnet34.relu(block1)   # [64, H/2, W/2]

        block2 = self.resnet34.maxpool(block1)
        block2 = self.resnet34.layer1(block2)  # [64, H/4, W/4]
        block3 = self.resnet34.layer2(block2)  # [128, H/8, W/8]
        block4 = self.resnet34.layer3(block3)  # [256, H/16, W/16]
        resnet_features = self.resnet34.layer4(block4)  # [512, H/32, W/32]

        # [B, 512, H/32, W/32]
        return resnet_features


#########################################
### STN - Spatial Transformer Network ###
#########################################
class TPS_SpatialTransformerNetwork(nn.Module):
    """ Rectification Network of RARE, namely TPS based STN """

    def __init__(self, num_fiducial_points, I_size, I_r_size, I_channel_num=1):
        """ Based on RARE TPS

        input:

            batch_I: Batch Input Image [batch_size x I_channel_num x I_height x I_width]

            I_size : (height, width) of the input image I

            I_r_size : (height, width) of the rectified image I_r

            I_channel_num : the number of channels of the input image I

        output:

            batch_I_r: rectified image [batch_size x I_channel_num x I_r_height x I_r_width]

        """
        super(TPS_SpatialTransformerNetwork, self).__init__()
        self.num_fiducial_points = num_fiducial_points
        self.I_size = I_size
        self.I_r_size = I_r_size  # = (I_r_height, I_r_width)
        self.I_channel_num = I_channel_num
        self.LocalizationNetwork = LocalizationNetwork(self.num_fiducial_points, self.I_channel_num)
        self.GridGenerator = GridGenerator(self.num_fiducial_points, self.I_r_size)

    def forward(self, batch_I):
        batch_C_prime = self.LocalizationNetwork(batch_I)  # batch_size x K x 2
        build_P_prime = self.GridGenerator.build_P_prime(batch_C_prime)  # batch_size x n (= I_r_width x I_r_height) x 2
        build_P_prime_reshape = build_P_prime.reshape([build_P_prime.size(0), self.I_r_size[0], self.I_r_size[1], 2])

        if torch.__version__ > "1.2.0":
            batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border', align_corners=True)
        else:
            batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border')

        return batch_I_r


class LocalizationNetwork(nn.Module):
    """ Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """

    def __init__(self, num_fiducial_points, I_channel_num):
        super(LocalizationNetwork, self).__init__()
        self.num_fiducial_points = num_fiducial_points
        self.I_channel_num = I_channel_num
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1,
                      bias=False), nn.BatchNorm2d(64), nn.ReLU(True),
            nn.MaxPool2d(2, 2),  # batch_size x 64 x I_height/2 x I_width/2
            nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True),
            nn.MaxPool2d(2, 2),  # batch_size x 128 x I_height/4 x I_width/4
            nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True),
            nn.MaxPool2d(2, 2),  # batch_size x 256 x I_height/8 x I_width/8
            nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True),
            nn.AdaptiveAvgPool2d(1)  # batch_size x 512
        )

        self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True))
        self.localization_fc2 = nn.Linear(256, self.num_fiducial_points * 2)

        # Init fc2 in LocalizationNetwork
        self.localization_fc2.weight.data.fill_(0)
        """ see RARE paper Fig. 6 (a) """
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(num_fiducial_points / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(num_fiducial_points / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(num_fiducial_points / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1)

    def forward(self, batch_I):
        """

        input:     batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width]

        output:    batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2]

        """
        batch_size = batch_I.size(0)
        features = self.conv(batch_I).view(batch_size, -1)
        batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.num_fiducial_points, 2)
        return batch_C_prime


class GridGenerator(nn.Module):
    """ Grid Generator of RARE, which produces P_prime by multipling T with P """

    def __init__(self, num_fiducial_points, I_r_size):
        """ Generate P_hat and inv_delta_C for later """
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.I_r_height, self.I_r_width = I_r_size
        self.num_fiducial_points = num_fiducial_points
        self.C = self._build_C(self.num_fiducial_points)  # F x 2
        self.P = self._build_P(self.I_r_width, self.I_r_height)
        ## for multi-gpu, you need register buffer
        self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.num_fiducial_points, self.C)).float())  # F+3 x F+3
        self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.num_fiducial_points, self.C, self.P)).float())  # n x F+3
        ## for fine-tuning with different image width, you may use below instead of self.register_buffer
        #self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.num_fiducial_points, self.C)).float().cuda()  # F+3 x F+3
        #self.P_hat = torch.tensor(self._build_P_hat(self.num_fiducial_points, self.C, self.P)).float().cuda()  # n x F+3

    def _build_C(self, F):
        """ Return coordinates of fiducial points in I_r; C """
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = -1 * np.ones(int(F / 2))
        ctrl_pts_y_bottom = np.ones(int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return C  # F x 2

    def _build_inv_delta_C(self, F, C):
        """ Return inv_delta_C which is needed to calculate T """
        hat_C = np.zeros((F, F), dtype=float)  # F x F
        for i in range(0, F):
            for j in range(i, F):
                r = np.linalg.norm(C[i] - C[j])
                hat_C[i, j] = r
                hat_C[j, i] = r
        np.fill_diagonal(hat_C, 1)
        hat_C = (hat_C ** 2) * np.log(hat_C)
        # print(C.shape, hat_C.shape)
        delta_C = np.concatenate(  # F+3 x F+3
            [
                np.concatenate([np.ones((F, 1)), C, hat_C], axis=1),  # F x F+3
                np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1),  # 2 x F+3
                np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1)  # 1 x F+3
            ],
            axis=0
        )
        inv_delta_C = np.linalg.inv(delta_C)
        return inv_delta_C  # F+3 x F+3

    def _build_P(self, I_r_width, I_r_height):
        I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width  # self.I_r_width
        I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height  # self.I_r_height
        P = np.stack(  # self.I_r_width x self.I_r_height x 2
            np.meshgrid(I_r_grid_x, I_r_grid_y),
            axis=2
        )
        return P.reshape([-1, 2])  # n (= self.I_r_width x self.I_r_height) x 2

    def _build_P_hat(self, F, C, P):
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1))  # n x 2 -> n x 1 x 2 -> n x F x 2
        C_tile = np.expand_dims(C, axis=0)  # 1 x F x 2
        P_diff = P_tile - C_tile  # n x F x 2
        rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False)  # n x F
        rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps))  # n x F
        P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
        return P_hat  # n x F+3

    def build_P_prime(self, batch_C_prime):
        """ Generate Grid from batch_C_prime [batch_size x F x 2] """
        batch_size = batch_C_prime.size(0)
        batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
        batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
        batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros(
            batch_size, 3, 2).float().to(device)), dim=1)  # batch_size x F+3 x 2
        batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros)  # batch_size x F+3 x 2
        batch_P_prime = torch.bmm(batch_P_hat, batch_T)  # batch_size x n x 2
        return batch_P_prime  # batch_size x n x 2


"""

########################################

######## Pyramid Pooling Block #########

########################################

class PyramidPool(nn.Module):

    def __init__(self, pool_kernel_size, in_channels, out_channels):

        super().__init__()

        self.pool_kernel_size = pool_kernel_size

        self.avg_pool_block = nn.Sequential(

            nn.AvgPool2d((1, self.pool_kernel_size), stride=(1, self.pool_kernel_size)),

            nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding="same", bias=False),

            nn.BatchNorm2d(out_channels),

            nn.ELU(inplace=True),

        )



        for m in self.modules():

            if isinstance(m, nn.Conv2d):

                nn.init.xavier_normal_(m.weight)

            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):

                nn.init.constant_(m.weight, 1)

                nn.init.constant_(m.bias, 0)



    def forward(self, x):

        _, _, in_height, in_width = x.size()

        x = self.avg_pool_block(x)

        x = F.interpolate(x, size=(in_height, in_width), mode="bilinear")

        return x





class PyramidPoolBlock(nn.Module):

    def __init__(self, pyramid_pool_kernel_sizes=[4, 8, 16, 32], num_channels=512):

        super().__init__()

        pp_out_channels = 256

        self.pyramid_pool_layers = nn.ModuleList([PyramidPool(pool_kernel_size=k, in_channels=num_channels, out_channels=pp_out_channels) for k in pyramid_pool_kernel_sizes])

        self.final_layer = nn.Sequential(

            nn.Conv2d((num_channels + (pp_out_channels * len(self.pyramid_pool_layers))), num_channels, (1, 5), stride=1, padding="same"),

            nn.BatchNorm2d(num_channels),

            nn.ELU(inplace=True),

            nn.Dropout(p=0.1),

        )



    def forward(self, input):

        pp_outputs = []

        for pp_layer in self.pyramid_pool_layers:

            pp_output = pp_layer(input)

            pp_outputs.append(pp_output)

        pp_outputs.append(input)

        x = torch.cat(pp_outputs, dim=1)

        x = self.final_layer(x)

        return x

"""