Spaces:
Build error
Build error
File size: 4,947 Bytes
9915c5d 63d83d1 9915c5d c714bcb 9915c5d 33ac1d8 9915c5d 33ac1d8 eeaf709 33ac1d8 9915c5d 63d83d1 9915c5d c714bcb 9915c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import subprocess
import yaml
from tqdm import tqdm
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from sync_batchnorm import DataParallelWithCallback
from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector
from animate import normalize_kp
def load_checkpoints(config_path, checkpoint_path, cpu=False):
with open(config_path) as f:
config = yaml.load(f)
generator = OcclusionAwareGenerator(
**config["model_params"]["generator_params"], **config["model_params"]["common_params"]
)
if not cpu:
generator.cuda()
kp_detector = KPDetector(**config["model_params"]["kp_detector_params"], **config["model_params"]["common_params"])
if not cpu:
kp_detector.cuda()
if cpu:
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu"))
else:
checkpoint = torch.load(checkpoint_path)
generator.load_state_dict(checkpoint["generator"])
kp_detector.load_state_dict(checkpoint["kp_detector"])
if not cpu:
generator = DataParallelWithCallback(generator)
kp_detector = DataParallelWithCallback(kp_detector)
generator.eval()
kp_detector.eval()
return generator, kp_detector
def make_animation(
source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False
):
with torch.no_grad():
predictions = []
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
if not cpu:
source = source.cuda()
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
kp_source = kp_detector(source)
kp_driving_initial = kp_detector(driving[:, :, 0])
for frame_idx in tqdm(range(driving.shape[2])):
driving_frame = driving[:, :, frame_idx]
if not cpu:
driving_frame = driving_frame.cuda()
kp_driving = kp_detector(driving_frame)
kp_norm = normalize_kp(
kp_source=kp_source,
kp_driving=kp_driving,
kp_driving_initial=kp_driving_initial,
use_relative_movement=relative,
use_relative_jacobian=relative,
adapt_movement_scale=adapt_movement_scale,
)
out = generator(source, kp_source=kp_source, kp_driving=kp_norm)
predictions.append(np.transpose(out["prediction"].data.cpu().numpy(), [0, 2, 3, 1])[0])
return predictions
def inference(video, image):
# trim video to 8 seconds
cmd = f"ffmpeg -ss 00:00:00 -i {video} -to 00:00:08 -c copy {video}"
subprocess.run(cmd.split())
source_image = imageio.imread(image)
reader = imageio.get_reader(video)
fps = reader.get_meta_data()["fps"]
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
source_image = resize(source_image, (256, 256))[..., :3]
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
predictions = make_animation(
source_image,
driving_video,
generator,
kp_detector,
relative=True,
adapt_movement_scale=True,
cpu=False,
)
imageio.mimsave("result.mp4", [img_as_ubyte(frame) for frame in predictions], fps=fps)
imageio.mimsave("driving.mp4", [img_as_ubyte(frame) for frame in driving_video], fps=fps)
cmd = f"ffmpeg -y -i result.mp4 -i {video} -c copy -map 0:0 -map 1:1 -shortest out.mp4"
subprocess.run(cmd.split())
cmd = "ffmpeg -y -i driving.mp4 -i out.mp4 -filter_complex hstack=inputs=2 final.mp4"
subprocess.run(cmd.split())
return "final.mp4"
title = "First Order Motion Model"
description = "Gradio demo for First Order Motion Model. Read more at the links below. Upload a video file (cropped to face), a facial image and have fun :D"
article = "<p style='text-align: center'><a href='https://papers.nips.cc/paper/2019/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf' target='_blank'>First Order Motion Model for Image Animation</a> | <a href='https://github.com/AliaksandrSiarohin/first-order-model' target='_blank'>Github Repo</a></p>"
examples = [["bella_porch.mp4", "julien.png"]]
generator, kp_detector = load_checkpoints(
config_path="config/vox-256.yaml",
checkpoint_path="weights/vox-adv-cpk.pth.tar",
cpu=False,
)
iface = gr.Interface(
inference,
[
gr.inputs.Video(type="mp4"),
gr.inputs.Image(type="filepath"),
],
outputs=gr.outputs.Video(label="Output Video"),
examples=examples,
enable_queue=True,
title=title,
article=article,
description=description,
server_name="0.0.0.0",
)
iface.launch(debug=True)
|